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Abstract: Up to now, very few reports have been published concerning the application of 
multiobjective optimization (MOOP) techniques to quantitative structure–activity relationship 
(QSAR) studies. However, none reports the optimization of objectives related directly to the 
desired pharmaceutical profile of the drug. In this work, for the first time, it is proposed a MOOP 
method based on Derringer’s desirability function that allows conducting global QSAR studies 
considering simultaneously the pharmacological, pharmacokinetic and toxicological profile of a 
set of molecule candidates. The usefulness of the method is demonstrated by applying it to the 
simultaneous optimization of the analgesic, antiinflammatory, and ulcerogenic properties of a 
library of fifteen 3-(3-methylphenyl)-2-substituted amino-3H-quinazolin-4-one compounds. The 
levels of the predictor variables producing concurrently the best possible compromise between 
these properties is found and used to design a set of new optimized drug candidates. Our results 
also suggest the relevant role of the bulkiness of alkyl substituents on the C-2 position of the 
quinazoline ring over the ulcerogenic properties for this family of compounds. Finally, and most 
importantly, the desirabilitybased MOOP method proposed is a valuable tool and shall aid in the 
future rational design of novel successful drugs. 
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Introduction 
 

Developing a successful drug is a complex and lengthy process and failure at the development 
stage is due to multiple factors, such as lack of efficacy, poor bioavailability, and toxicity.1 
Improving the profile of a candidate drug requires finding the best compromise between various, 
often competing objectives. In fact, the ideal drug should have the highest therapeutic efficacy, 
the highest bioavailability and the lowest toxicity, which highlights the multiobjective nature of 
the drug discovery and development process. But even when a potent candidate has been 
identified, the pharmaceutical industry routinely tries to optimize the remaining objectives one at 
a time, which often results in expensive and time-consuming cycles of trial and error.2 Roughly 
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75% of the total costs during the development of a drug are attributed to poor pharmacokinetics 
and/or toxicity.3 

In the last years, the drug discovery/development process has been gaining in efficiency and 
rationality because of the continuous progress and application of chemoinformatics methods.2 In 
particular, the quantitative structure–activity relationship (QSAR) paradigm has long been of 
interest in the drug-design process,4 redirecting our thinking about structuring medicinal 
chemistry.5 Yet, standard chemoinformatics approaches usually ignore multiple objectives and 
optimize each biological property sequentially.6–17 Nevertheless, some efforts have been made 
recently toward unified approaches able of modeling multiple pharmacological, 
pharmacokinetic, or toxicological properties onto a single QSAR equation.18–21 

Multiobjective optimization (MOOP) methods introduce a new philosophy for reaching 
optimality based on compromises among the various objectives. These methods aim at 
discovering the global optimal solution by optimizing several dependent properties 
simultaneously. The major benefit of MOOP methods is that local optima corresponding to one 
objective can be avoided by taking into account the whole spectra of objectives, leading thus to a 
more efficient overall process.22 

Several applications of MOOP methods have appeared lately ranging from substructure mining 
to docking, including inverse quantitative structure property relationship (QSPR) and QSAR.22, 

24-33 Most of these MOOP applications have been based on the following approaches: weighted-
sum-of-objective-functions (WSOF)23 and pareto-based methods.22 An excellent review on the 
subject has been most recently published by Nicolaou et al.22 

Despite the availability of numerous optimization objectives, MOOP techniques have only 
recently been applied to the building of QSAR models. Actually, very few reports exist of the 
application of MOOP methods to QSAR. Nicolotti et al.31 employed a variant of an evolutionary 
algorithm called multiobjective genetic programming that used pareto ranking to optimize the 
QSAR models. A number of conflicting objectives including model accuracy, number of terms, 
internal complexity, and interpretability of the descriptors used in the model were considered. On 
the other hand, Stockfisch32 proposed a nonevolutionary multiobjective technique called the 
partially unified multiple property recursive partitioning method for building QSAR models. 
This method was successfully used to construct models to analyze selectivity relationships 
between cyclooxygenase 1 and 2 inhibitors.33 Up to now, no QSAR study has nevertheless 
reported the simultaneous optimization of competing objectives directly related with the 
definitive pharmaceutical profile of drugs, such as therapeutic efficacy, bioavailability, and/or 
toxicity. 

In the present work, we are proposing a MOOP method based on Derringer’s desirability 
function34 that allows running global QSAR studies jointly considering multiple properties of 
interest to the drug-design process. The method proposed is applied to a small set of 2-
substituted amino-3H-quinazolin-4-one compounds with the aim of simultaneously optimizing 
their analgesic, antiinflammatory and ulcerogenic properties, as well as suggesting new 
improved drug candidates of this kind. 
 
Materials and Methods 
 

Data set. Our prediction models (PMs) were developed using a library of fifteen 3-(3-
methylphenyl)-2-substituted amino-3H-quinazolin-4-one compounds published by Alagarsamy 
et al.35 The analgesic activity (An) reported for these compounds (in %) was measured using the 



tail-flick method in Wistar albino mice,36 whereas the antiinflammatory activity (Aa) reported (in 
%) was evaluated using the carrageenan-induced paw oedema test in rats.36 The ulcerogenic 
index (U) was determined by the method of Ganguly and Bhatnagar,37 and the ulcers were 
induced in rats using the method described by Goyal et al.38 All these assays35 were performed by 
administering a maximum dose of 20 mg.kg -1. 

 
Computational methods. The structures of all compounds were first drawn with the aid of 

ChemDraw software package,39 and reasonable starting geometries obtained by resorting to the 
MM2 molcular mechanics force field.40,41 Molecular structures were then fully optimized with 
the PM3 semiempirical Hamiltonian,39 implemented in the MOPAC 6.0 program.42 Here, it 
should be remarked that the final molecular structures pertain only to the compounds’ global 
minimum energy conformations, and indeed, further molecular simulations and/or docking 
studies would be desirable to reach reliable conclusions about conformational requirements and 
ligand–receptor interactions. But the point of any QSAR model is to have a set of readily 
calculated descriptors, and such an approach would require much more extensive calculations. 

Subsequently, the optimized structures were brought into the DRAGON software package43 for 
computing a total of 120 atom-centered fragment (ACF) molecular descriptors.44 ACF 
descriptors were chosen because their simple nature offers easy structural interpretation. To 
reduce noisy information that could lead to chance correlations, descriptors having constant or 
near constant values as well as highly pair-correlated (|R| [ 0.95) were excluded. Thus, from an 
initial set of 120 ACF molecular descriptors only 12 remained for further variable selection. 
Table 1 summarizes and describes the ACF molecular descriptors used in this work. 
 
Table 1. Symbols and description for the 12 acf descriptors remaining after variable reduction. 

 
 

The task of selecting the descriptors that will be more suitable to model the activity of interest 
is complicated, as there are no absolute criteria for ruling such selection. Approaches 
implementing genetic algorithms (GA) for solving optimization problems in ANN45–47 and 
SVM48 based QSAR have been recently reported. Herein, the GA optimization technique was 
applied for variable selection49–52 by using the BuildQSAR software package.53,54 The particular 
GA simulation conditions applied here were 10,000 generations, 300 model populations and 35% 
of mutation probabilities. Figure 1 depicts the ACF molecular descriptors selected by the GA 
method, which were finally applied to model the analgesic, antiinflammatory, and ulcerogenic 
properties of the present compounds. 
   



 
Figure 1. Atom-centered fragments (ACF) descriptors for compound AS14. 
 

As to the modeling technique, we opted for a regression based approach; in this case, the 
regression coefficients and statistical parameters were obtained by multiple linear regression 
(MLR) analysis by means of the STATISTICA software package.55 For each PM, the goodness 
of fit was assessed by examining the determination coefficient (R2), the adjusted determination 
coefficient (Adj.R2), the standard deviation (s), Fisher’s statistics (F), as well as the ratio between 
the number of compounds (N), and the number of adjustable parameters (ρ) in the model, known 
as the q statistics. The predictive ability of the models was evaluated by means of internal cross-
validation (CV), specifically by the leave-one-out (LOO) technique.56 Quality of the new models 
(Q2

LOO) gives then an estimated measure of the predictive ability of the full model. 
We have also checked the validity of the preadopted parametric assumptions, another 

important aspect in the application of linear multivariate statistical-based approaches.57 These 
include the linearity of the modeled property, homoscedasticity (or homogeneity of variance) as 
well as the normal distribution of the residuals and nonmulticollinearity between the 
descriptors.58 

Finally, the applicability domain of the final PMs was identified by a leverage plot, that is to 
say, a plot of the standardized residuals.vs. leverages for each training compound.56,59 The 
leverage (hi) of a compound in the original variable space measures its influence on the model, 
and is calculated as follows: 
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where ti is the descriptor vector of that compound and T is the model matrix derived from the 
training set descriptor values. In addition, the warning leverage h* is defined as 

Nph ´/3* ×=                                                                                                                                 (2) 
Leverage values can be calculated for both training compounds and new compounds. A 

leverage higher than the warning leverage h* means that the compound predicted response can be 
extrapolated from the model, and thus, the predicted value must be used with great care. On the 
other hand, a standardized residual value greater than two indicates that the value of the 
dependent variable for the compound is significantly separated from the remainder training data, 
and hence, such predictions must be considered with much caution too. In this work, only 
predicted data for new compounds belonging to the applicability domain of the training set were 
considered reliable. 



 
MultiObjective OPtimization based on the Desirability Estimation of Several Interrelated 

REsponses (MOOP-DESIRE). Improving the profile of a molecule for the drug discovery and 
development process requires the simultaneous optimization of several different objectives. The 
ideal drug should have the highest therapeutic efficacy and bioavailability, as well as the lowest 
toxicity. Because of the conflicting relationship among the aforementioned properties, to 
discover such a drug is almost a chimera and, if possible, an extremely difficult, expensive and 
time-consuming task. However, finding the best compromise between such objectives is an 
accessible and more realistic target (see Figure 2). 
 

 
Figure 2. Graphic representation of the compromise between therapeutic efficacy (potency), 
bioavailability (ADME properties), and toxicity (safety) required to reach a successful drug. 
 

In this work, we are proposing a MOOP technique based on the desirability estimation of 
several interrelated responses (MOOP-DESIRE) as a tool for performing global QSAR studies, 
taking into account both the pharmacological, pharmacokinetic and toxicological profiles of a set 
of candidates. MOOP-DESIRE methodology is intended to find the most desirable solution that 
optimizes a multiobjective problem by using the Derringer’s desirability function,56,59 

specifically addressed to confer rationality to the drug development process. 
The process of simultaneous optimization of multiple properties of a drug candidate can be 

described as follows. From now on, the terms ‘‘response variable’’ and ‘‘independent variables’’ 
should be understood as any property to be optimized, and any set of molecular descriptors used 
to model each property, respectively. 
1. Prediction models set-up. 

Each response variable (Yi) is related to the n independent variables (Xn) by an unknown 
functional relationship, often (but not necessarily) approximated by a linear function. Each 
predicted response (Ŷi) is then estimated by a least-squares regression technique. 

In some cases, the developed prediction model for some response may share the same 
independent variables of the other responses’ prediction models, but with different coefficients. 
In this atypical case, attaining the best compromise among the responses turns out to be simpler. 
Actually, due to the multiplicity of factors involved in the “drugability” of a molecule, one 
should not expect that the same subset of independent variables can optimally explain both 
different types of biological properties (especially conflicting properties like potency and 
toxicity). However, in the latter case, there is still a way to maximize the desirability of both 



biological properties, i.e. to set-up a global prediction model where the predicted values of each 
response are fitted to a linear function using the whole subset of independent variables employed 
in modeling the k original responses. Here, the independent variables used in computing the 
predicted values for the original responses will remain the same. Independent variables not used 
in computing the predicted values for the original responses will be set to zero. 
2. Desirability functions selection and evaluation. 

For each predicted response Ŷi, a desirability function di assigns values between 0 and 1 to the 
possible values of Ŷi. This transformed response di, can have many different shapes. Regardless 
of the shape, di = 0 represents a completely undesirable value of Ŷi, and di = 1 represents a 
completely desirable or ideal response value. The individual desirabilities are then combined 
using the geometric mean, which gives the overall desirability D: 

k
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1

21 )...( ×××=                                                                                                                  (3) 
with k denoting the number of responses. 

This single value of D gives the overall assessment of the desirability of the combined response 
levels. Clearly, the range of D will fall in the interval [0, l] and will increase as the balance of the 
properties becomes more favorable. Notice that if for any response di = 0, then the overall 
desirability is zero. Thus, the desirability maximum will be at the levels of the independent 
variables that simultaneously produce the maximum desirability, given the original models used 
for predicting each original response. 

Depending on whether a particular response is to be maximized, minimized, or assigned a 
target value, different desirability functions can be used. Here we used the desirability functions 
proposed by Derringer and Suich34. 

Let Li, Ui and Ti be the lower, upper, and target values, respectively, that are desired for the 
response Ŷi, with Li ≤ Ti ≤ Ui. 

If a response is of the target best kind, then its individual desirability function is defined as: 
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If a response is to be maximized instead, its individual desirability function is defined as: 
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In this case, Ti is interpreted as a large enough value for the response, which can be Ui. 
Finally, if one wants to minimize a response, one might use: 
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Here, Ti denotes a small enough value for the response, which can be Li. Moreover, the 
exponents s and t determine how important is to hit the target value Ti. For s = t = 1, the 
desirability function increases linearly towards Ti. Large values for s and t should be selected if it 
is very desirable that the value of Ŷi be close to Ti or increase rapidly above Li. On the other 
hand, small values of s and t should be chosen if almost any value of Ŷi above Li, and below Ui 
are acceptable or if having values of Ŷi considerably above Li are not of critical importance34. 

In this way, one may predict the overall desirability for each drug candidate determined by k 
responses, which in turn are at the same time determined by a specific set of independent 
variables. However, as the Derringer’s desirability function is built using the estimated responses 
Ŷi, there is no way to know how reliable the predicted D value of each candidate is. 

To overcome this shortcoming, we propose here a statistical parameter, the overall 
desirability’s determination coefficient (R2

D), which measures the effect of the set of independent 
variables Xn in reducing the uncertainty when predicting the D values. 

If the response variable is estimated as a continuous function of the independent variables Xn, 
the individual desirabilities di are continuous functions of the estimated Ŷi’s (eqs. 4, 5 and 6), and 
the overall desirability D is a continuous function of the di’s (eq. 3), then D is also a continuous 
function of the Xn. Therefore, R2

D can be computed in analogy with the so-called determination 
coefficient R2

. Specifically, R2
D is computed by using the observed DYi (calculated from Yi) and 

the predicted DŶi (calculated from Ŷi) overall desirability values instead of using directly the 
measured (Yi) and predicted (Ŷi) response values.  

∑
∑

−

−
−=−= 2

2
ˆ2

)(

)(
11

ii

ii
D

YY

YY

DD

DD

SSTO
SSER                                                                                            (7) 

where DYi and DŶi have been defined previously. iYD is the mean value of D for the Yi responses 
of each case included in the data set, SSTO is the total sum of squares, and SSE is the sum of 
squares due to error.  

Similar to R2, the adjusted overall desirability’s determination coefficient (Adj. R2
D) can be 

computed as shown below.  
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Like this, both R2
D and Adj. R2

D have the same properties of R2 and Adj. R2. Thus, both will fall 
in the range [0, 1] and the larger R2

D /Adj. R2
D is, the lower is the uncertainty in predicting D by 

using a specific set of independent variables Xn
60. 

Since R2
D and Adj. R2

D measure the goodness of fit rather than the predictive ability of a certain 
PM, it is advisable to use an analogous of the leave one out cross validation determination 
coefficient (Q2

LOO) to establish the reliability of the method in predicting D. For this, the overall 



desirability’s LOO−CV determination coefficient (Q2
D) can be defined in an analogous way as 

R2
D: 
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where SSELOO−CV and DŶi (LOO-CV) are the leave one out cross validation square sum of 
residuals and the predicted overall desirability by LOO-CV, respectively. 

In this way, we can have a measure of how reliable will be the simultaneous optimization of 
the k responses over the independent variables domain. 
3. Multi-objective optimization. 

As seen before, the desirability function condenses a multivariate optimization problem into a 
univariate one. Thus, the overall desirability D can be maximized over the independent variables 
domain. For accomplish this, one can use the Response/Desirability Profiler option of any of the 
modules of regression or discriminant analysis implemented in STATISTICA55. The overall 
desirability D is optimized with the “Use general function optimization” option, that is, the 
simplex method of function optimization, 61-63 or the “Optimum desirability at exact grid points” 
option, which performs exhaustive searches for the optimum desirability at exact grid points. The 
first option is usually faster, but the default option is the later one, except when the number of 
predicted values that must be computed to perform the exhaustive grid search exceeds 200000, in 
which case the Use general function optimization option becomes the default. 

The final result is to find the optimal levels (or an optimal range) of the independent variables 
that optimize simultaneously the k responses determining the final quality of the product. In this 
way, the best possible compromise between the k responses is found and consequently the 
highest overall desirability for the final compound is reached (i.e. the more enviable drug 
candidate). 
 

Desirability Functions Specifications. Response/desirability profiling allows one to trace the 
response surface produced by fitting the observed response(s) using equation(s) based on the 
levels of the independent variables.34 That is to say, one can inspect the predicted values for the 
response(s) at different combinations of levels of the independent variables, specify desirability 
function(s) for the response(s), and search for the levels of the independent variables that 
simultaneously produce the most desirable response or the best possible compromise among 
responses leading to the most desirable solution (candidate molecule). 

In the present work, the optimization of the overall desirability was carried on by the Optimum 
desirability at exact grid points option of the general regression module of STATISTICA.55 
Three desirability functions, one for each response, were fitted. Specifically, the analgesic and 
anti-inflammatory activities ought to be maximized [eq. (3)]. For estimating their di’s, the lower 
value Li was set to 25%, and the upper value Ui, made equal to the target value Ti, was set to 
100% for both responses. In contrast, the ulcerogenic index must be minimized where Li = Ti = 0 
and Ui = 1.73 [eq. (4)]. The value of Ui = 1.73 corresponds to the ulcerogenic index of aspirin 
(measured with the same protocol used for the training set35), a NSAID with a recognized 
ulcerogenic ability. Furthermore, the spline method64,65 was used for fitting the desirability 
function and surface/contours maps, and the current level of each independent variable was set 
equal to its optimum value. As to the s and t parameters, these were fixed at 1.00 by assuming 
that the desirability functions increase linearly towards Ti on the three responses. 
 



Results and Discussion 
 

MOOP–DESIRE-based optimization. Following the strategy outlined previously, we began 
by seeking the best linear models relating each property to the ACF molecular descriptors. One 
should emphasize here that the reliability of the final results of the optimization process strongly 
depends on the quality of the initial set of PMs. 

One MLR-based PM containing two ACF44 variables previously selected by GA was 
developed for each property. The resulting best-fit models are given in Table 2 together with the 
statistical regression parameters, whereas the computed ACF molecular descriptors along with 
the measured and predicted values of the analgesic activity, antiinflammatory activity, and the 
ulcerogenic index for the 15 training compounds are shown in Table 3. 
 
Table 2. Regression coefficients and statistical parameters for the MLR models. 

 
 

As can be noticed, the models are good in both statistical significance and predictive ability 
(see Table 2). Good overall quality of the models is revealed by the large F and small p values, 
satisfactory ρ values (ρ = 5), along with R2 and Adj.R2 (goodness of fit) values ranging from 
0.803 to 0.935 and 0.771 to 0.923, respectively; as well as Q2

LOO (predictivity) values between 
0.713 and 0.905. 

The next step is to find out if the basic assumptions of MLR analysis (linearity, normality, 
homoscedaticity and non multicollinearity,) are fulfilled. No violations of such assumptions were 
found that could compromise the reliability of the resulting predictions. 

Another aspect deserving special attention is the applicability domain of the several PMs. The 
leverage values (h) and standardized residuals (Std. Res.) related to three PMs for the 15 training 
compounds are shown in Table 4, whereas Figure 3 shows the corresponding leverage plots. 
From these plots, the applicability domain is established inside a squared area within ±2 standard 
deviations and a leverage threshold h* of 0.6 (Notice that each model was fitted using 15 training 
compounds and included 3 adjustable parameters: two ACF descriptors plus the intercept.). As 
seen in Figure 3, only one compound of the training set has a leverage greater than h* for Aa, but 
shows standard deviation values within the limits, which implies that it should not be considered 
an outlier but instead as an influential compound. 
 
 



Table 3. Computed ACF descriptors (C-001, C-037, and H-046), measured and predicted values for the 
analgesic (An) and antiinflammatory (Aa) activities, plus the ulcerogenic index (U) of the training set 
compounds. 

 



Table 4. Leverages (h) and standardized residuals (Std. Res.) for the analgesic (An) and antiinflammatory 
(Aa) activities, plus the ulcerogenic index (U) prediction models. 

 
 

 
Figure 3. Leverage plots based on the three MLR models; i.e. plots of the standardized residuals.vs. 
leverage values for the training compounds, with a warning leverage of 0.6. 
 

So far, we have demonstrated the satisfactory accuracy and the predictive ability of the 
developed PMs. We may now thus proceed with an adequate level of confidence to the 
simultaneous optimization of the analgesic, antiinflammatory and ulcerogenic properties for the 
set of compounds. Here it is important to remark that, since D is maximized directly over the 
independent variables domain, and at the same time, the predicted D values depend on the initial 
set of PMs, one should consider the applicability domain of each PM to determine the optimum 
level of each independent variable as well as for the selection of the optimal solution(s). 

First, the predicted values for each property were used to fit a model containing all the 
independent variables (C-001, C-037, and H-046) applied in modeling the original properties 
(An, Aa and U). So, for the An and U properties, the original values of C-001 and C-037 were 
used (H-046 values were set to zero), and for Aa, the original values of C-001 and H-046 (C-037 
values were set to zero). In so doing, one is able to discriminate opposite objectives like efficacy 
(analgesic and anti-inflammatory activities) and toxicity (ulcerogenic ability) with total or partial 
overlap of the descriptors set used to built the PMs (Notice that the An and U models both 
contain the C-001 and C-037 descriptors, and the An, Aa, and U models share a common 
descriptor, i.e. C-001; see Table 2.). Once the model has been set up, the desirability functions 



for each property (di’s) might be specified. In order to obtain candidate(s) with high analgesic 
and anti-inflammatory activities as well as low ulcerogenic index, An and Aa should be 
maximized [eq. (3)] and U minimized [eq. (4)]. In addition, the individual di values for the An, 
Aa, and U properties were determined by setting the Li, Ui and Ti values as referred previously. 
Then, the three di’s were combined into the single overall desirability D by means of eq. (1). 

The expected and predicted desirability values attributable to each response plus the overall 
desirability for the training set are depicted in Table 5. In addition, the LOO-CV predicted values 
and the desirability values for each response, along with the overall desirability values are shown 
in Table 6. 
 
Table 5. Expected and predicted values for the desirability due to the analgesic activity [d(An)], 
antiinflammatory activity [d(Aa)], ulcerogenic index [d(U)], and overall desirability [D(An-Aa-U)]. 

 
aStatistical quality of the overall desirability function estimated by the overall desirability determination coefficient 
(R2

D) and the adjusted  determination coefficient (Adj. R2
D). 

 
Table 6. Leave-One-Out Cross-Validation (LOO-CV) Results. 

 
 

As can be seen, the overall desirability function exhibits good statistical quality as indicated by 
the R2

D and Adj.R2
D values (~1). Moreover, the high Q2

D value (0.905) provides an adequate 
level of reliability on the method in predicting D. 



Finally, the optimization of the overall desirability was carried out to obtain the levels of the 
ACF descriptors that simultaneously produce the most desirable combination of all properties. 
Figure 4 shows the multiple response overall desirability, as well as the individual desirability 
functions determined by the respective pairs of predictor variables included on the three MLR 
models. 
 

 
Figure 4. Multiple response desirability function due to the analgesic activity, anti-inflammatory activity 
and ulcerogenic index (D(An-Aa-U) (last row), along with the individual desirability functions coming 
from the pairs of predictor variables included on the three MLR models (first three rows). 
 

By inspecting the form of each individual desirability function, it is possible to know the 
influence of a certain variable over each individual objective. In so doing, one can conclude that 
C-001 has a significant influence over the three properties, while H-046 has only a remarkable 
influence on the Aa activity. Here, one should note that the form of the An individual desirability 
function is similar to that obtained for the Aa activity (for these noncompeting objectives, both 
curves show a positive slope). However, opposite individual desirability function forms were 
obtained for competing objectives like Aa and U (i.e. the curve related to the ulcerogenic index 
has a negative slope). 

Moreover, the data reveal that a 3-(3-methylphenyl)-2-substituted amino-3H-quinazolin-4-one 
optimized candidate must have analgesic and anti-inflammatory activities of 93.43% and 
82.04%, respectively, plus an ulcerogenic index of 0.44. This represents an overall desirability of 
0.8; that can be attained if the candidate has C-001, C-037 and H-046 values equal to 5, 0, and 
12, respectively (see Fig. 4), being C-001 the most influencing variable. The significant slope of 



the C-001 curve suggests that more attractive candidates could be designed if its values are 
greater than 5. However, due to the high influence of C-001 over the overall desirability, the 
optimal range for this variable should be close to 5. But one must also consider the applicability 
domain of the original PMs. In fact, the training set show C-001 values up to 3 and thus, if the 
new candidate has a C-001 value extremely far from 3, it might be out of the applicability 
domain of the original PMs. On the other hand, as the shape of the H-046 desirability function 
reveals no significant influence (slope near zero), the overall desirability could be increased by 
large departures from its optimum value (= 12). But again the applicability domain of the 
original PMs should be taken into account. 

 
Design of new drug candidates. According to the previous results, the most important 

variable was found to be descriptor C-001 and the second one descriptor C-037. These two ACF 
descriptors represent, respectively, the number of methyl groups and heteroatoms attached to a 
sp2 carbon atom linked to the aromatic side ring in the drug candidates (see Figure 1). On the 
other hand, the less influencing ACF descriptor, H-046, represents the number of hydrogen 
atoms attached to a sp3 carbon no heteroatom attached to another carbon (see Figure 1). 

This information allows one to guess the most important chemical modifications needed to 
improve the overall desirability of the present compounds. Considering the positive/negative 
influence of C-001/C-037 a different number vs. type of alkyl groups on the C-2 position of the 
quinazoline ring should be introduced. In fact, the introduction of branched alkyl substituents 
might lead to a positive role due to the bulkiness of the substituents. 

So, a new set of nine compounds was designed in which several different alkyl substituents 
were linked to the C-2 position of the quinazoline ring. The chemical modifications and the 
predicted values of the expected pharmaceutical properties are shown in Table 7. The leverage 
values obtained for each new designed candidate were also considered to check whether or not 
each new candidate falls within the applicability domain of the original PMs (see Table 7). 

After a comprehensive data analysis, compound ASNEW8 can be claimed to be the most 
desirable and reliable candidate designed in this study, displaying predicted percentages of 
analgesic and antiinflammatory activities of 93 and 82, respectively, plus a predicted ulcerogenic 
index of 0.44. Further, an excellent predicted overall desirability (0.8) is obtained. The data 
acquired allow us to propose also compounds ASNEW4, ASNEW5, ASNEW6, and ASNEW9, 
though having leverage values higher than h*, i.e. out of the applicability domain of the original 
PMs. Interestingly, they possess the highest overall desirability and predictor variables values, 
significantly separated from those of the training compounds (see Table 8). 

A noticeable profile improvement can be observed between the predicted properties displayed 
by compound ASNEW8 and the most promising compound reported by Alagarsamy et al. 
(AS3).35 Explicitly, ASNEW8 displays analgesic and antiinflammatory activities 15 and 13% 
higher, respectively. At the same time, ASNEW8 shows only the 78.6% of the ulcerogenic 
ability of AS3. On the other hand, if we compare the performance of ASNEW8 with diclofenac 
(a known NSAIDs used as reference compound35), one can easily notice its enhanced predicted 
pharmaceutical properties. In effect, ASNEW8 displays analgesic and antiinflammatory 
activities 31% and 22% higher than diclofenac, respectively. In addition, the ulcerogenic index is 
extensively reduced (ASNEW8 has almost a quarter (3.75 times lower) of the ulcerogenic ability 
of diclofenac). 

In summary, a remarkable simultaneous improvement on the analgesic and antiinflammatory 
activities plus ulcerogenic profile of the new designed candidates was obtained through 



MOOPDESIRE-based methods combined with human expert interpretation and use of the 
results. The data suggest a positive role of the bulkiness of the alkyl substituents on the C-2 
position of the quinazoline ring on the ulcerogenic properties. Anyhow, in the future, an 
experimental study of the analgesic, antiinflammatory and ulcerogenic properties of the designed 
candidates should be carried out to validate the process. 
 
Table 7. Computed ACF descriptors (C-001, C-037, and H-046), predicted and leverage values for the 
analgesic (An) and antiinflammatory (Aa) activities, plus the ulcerogenic index (U) of the nine new 
designed compounds. 

 
aCompounds out of the predictions model’s applicability domain; leverage values greater than h* are marked in 
bold. 
 



Table 8. Predicted values for the desirability due to the analgesic activity [d(An)], antiinflammatory 
activity [d(Aa)], ulcerogenic index [d(U)], and overall desirability [D(An-Aa-U)] of the nine new 
designed compounds. 

 
aCompounds out of the predictions model’s applicability domain. 
 

Despite the limited size and homogeneity of our data set, this work offers the possibility of a 
deeper and case by case analysis of the results obtained by using the MOOP-DESIRE 
methodology. The use of small and homogeneous data set is more suitable for later stages of the 
drug development process once identified a lead rather than for early stages. Actually, the results 
of the optimization process can be used to perform specific structural modifications over the 
lead. For this, the use of clearly defined structural or physicochemical descriptors can lead to 
interpretable structure–desirability relationships which can be used to design new candidates 
with an improved pharmaceutical profile. The MOOP-DESIRE methodology can also be applied 
to handle larger and/or more diverse data sets, such as those frequently obtained in High-
Throughput Screening processes, being there more appropriate for early stages of the drug 
development process. That is, molecules coming from large and heterogeneous data sets can be 
filtered and ranked according to a certain criterion rather than applying the results of the 
optimization process to design new candidates. To accomplish that, one can resort to the overall 
desirability of each molecule as a ranking criterion or to several distance measures between the 
optimal values of the descriptors determined by MOOP-DESIRE and the computed values of the 
descriptors. In this case, it is advisable to use descriptors leading to highly predictive structure–
desirability relationships rather than interpretable descriptors in order to ensure the accuracy of 
the predictions and therefore, an accurate assessment of the molecule’s overall desirability which 
will then be the ranking criterion. 
 
Conclusions 
 

In this work, a novel MOOP method sustained on the desirability estimation of several 
interrelated responses is proposed. The MOOP-DESIRE methodology based on Derringer’s 
desirability function enables one to perform global QSAR studies, considering simultaneously 
the pharmacological, pharmacokinetic and toxicological profiles of a set of molecule candidates. 
The usefulness of the methodology was demonstrated by applying it to the simultaneous 
optimization of the analgesic, anti-inflammatory and ulcerogenic properties of a library of fifteen 
3-(3-methylphenyl)-2-substituted amino-3H-quinazolin-4-one compounds. The best compromise 
between the mentioned properties was established and new drug candidates with the highest 
overall desirability then designed. In particular, one of the designed candidates (compound 
ASNEW8) is predicted to have 93% of analgesic activity, 82% of inflammatory inhibition and an 



ulcerogenic index of 0.44, which represents an excellent overall desirability (50.8), being this 
accomplished by modifying the compounds’ structure in such a way that pushed the values of the 
C-001, C-037, and H-046 predictor variables to 5, 0, and 12, respectively. Furthermore, it was 
observed that the presence of bulky alkyl substituents at the C-2 position of the quinazoline ring 
displayed a positive role on the ulcerogenic ability without a negative influence in the other 
properties. Yet, further experimental corroboration is still needed to validate the model. In 
conclusion, the desirability-based MOOP method herein proposed is regarded as a valuable tool 
and shall aid in the future rational design of novel successful drugs. 
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