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Abstract 

A novel approach to bio-macromolecular design from a linear algebra point of view is introduced. 

Protein’s total (whole-protein) and local (one or more amino-acid) linear indices are a new set of bio-

macromolecular descriptors of relevance to protein QSAR/QSPR studies. These amino-acid level 

biochemical descriptors are based on the calculation of linear maps on ℜ n [fk(xmi): ℜ n→ ℜ n] in 

canonical basis. These bio-macromolecular indices are calculated from the kth power of the 

macromolecular pseudograph’s α-carbon atom adjacency matrix. Total linear indices are linear 

functional on ℜ n. That is, the kth total linear indices are a linear maps from ℜ n to the scalar ℜ [ fk(xm): 

ℜ n→ ℜ ]. Thus, the kth total linear indices are calculated by summing the amino-acid linear indices of 

all amino-acids in the protein molecule. A study of the protein stability effects for a complete set of 

alanine substitutions in Arc repressor illustrates this approach. A quantitative model that discriminates 

near wild-type stability alanine-mutants from the reduced-stability ones in a training series was 

obtained. This model permitted the correct classification of 97.56% (40/41) and 91.67% (11/12) of 

proteins in the training and test set, respectively. It show a high Matthews´ correlation coefficient 

(MCC = 0.952) for the training set and a MCC = 0.837 for the external prediction set. Additionally, 

canonical regression analysis corroborated the statistical quality of the classification model (Rcanc = 

0.824).  This analysis was also used to compute biological stability canonical scores for each Arc 

alanine-mutant. On the other hand, linear piecewise regression model compared favorably with respect 

to linear regression one on predicting the melting temperature (tm) of the Arc alanine-mutants. The 

linear model explains almost 81% of the variance of the experimental tm (R = 0.90 and s = 4.29) and 

the LOO press statistics evidenced its predictive ability (q2 = 0.72 and scv = 4.79). Moreover, 

TOMOCOMD-CAMPS method produced a linear piece-wise regression (R = 0.97) between protein 

backbone descriptors and tm values for alanine-mutants of Arc repressor. A break-point value of 

51.87oC characterized two mutants’ clusters and coincided perfectly with the experimental scale. For 

this reason, we can use the linear discriminant analysis and piecewise models in combination to 

classify and predict the stability of the mutant Arc homodimers. These models also permitted the 

interpretation of the driving forces of such a folding process, indicating that topologic/topographic 

protein’s backbone interactions control the stability profile of wild-type Arc and its alanine-mutants.  
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1. Introduction 

The Anfinsen’s experiment with ribonuclease A and staphylococcal nuclease discovered that 

amino acid sequence of these small proteins encode their final folded structure and also encode the 

information on how to get to the structures.1,2 However, the “folding problem (prediction of the three-

dimensional structure of a protein from its amino-acid sequence)” still remains as one of the greatest 

unsolved problems of protein science. The folding problem is so important due to the large number of 

genome sequences completed in recent years. This fact has provoked a large gap between the sharply 

increasing number of protein sequences entering into data banks and the slow accumulation of known 

structures. Thus, predicting the spatial structure based on a given protein primary-sequence 

information could play a significant role in conjunction with experimental methods.3 

The major constituent of proteins is an umbranched polypeptide chain consisting of L-α-amino 

acids linked by amide bonds between the α-carboxyl group of one residue and the α-amino group of 

the next. The sequence of the amino acids defines the primary structure.4-9 As previously outlined, the 

genetically encoded sequence of a protein determines its three-dimensional structure.1,2,4-9 That is to 

say, if the side chain of each amino-acid within a protein is removed, the secondary structure of the 

protein is obtained. It is constructed around planar units of the peptide bonds. Closer examination 

reveals regions where the secondary structure is organized into repetitive and regular elements.  

Afterwards, the side chains can be added back to the backbone, and it is then seen how the ternary 

structure of the proteins is formed by packing the regular elements of the secondary structure through 

their side chains. For this reason, the structure of each protein can be expressed in a quantitative way 

by side chain amino-acid properties. Subsequently, Charton and Charton determined the dependence 

of protein conformation upon the side chain structure of the amino-acid residues using Chou-Fasman 

parameters.10  

In other approach about structure-activity studies, Hellberg et al. developed the so-called principal 

properties or z-values.11 This peptide QSAR methodology is based on a parametrization of each 

amino-acid occurring in a peptide chain with three z-values, which are linear combinations of the 

original measured variables. These values are proposed to be related to hydrophilicity, bulk, and 

electronic properties. The principal properties have been successfully used to seek peptide QSARs.11-13 

Other descriptors used in peptides QSAR studies have been derived from the side-chain surface area 

and the atomic charges of amino-acids.14  



Hydrophobicity (or hydrophilicity) plots  have the goal of predicting membrane-spanning 

segments (highly hydrophobic) or regions that are likely exposed on the surface of proteins 

(hydrophilic domains) and therefore potentially antigenic. In this context, several hydrophobic scales 

have been developed, most of which were derived from experimental studies on partitioning of 

peptides in apolar and polar solvents.15, 16 

In the other hand, most of the properties of very large systems, as bio-macromolecules and 

supramolecular complexes, can be assessed with simplified models. For example, in proteins, amino-

acid residues can be depicted using a lower level representation, i.e., two or three pseudo-atoms rather 

than by an all-atom representation.17,18 The advantage of using non-atomic representation is, however, 

not limited to the increase of the speed of computations. Simplified representations of protein 

geometry have also been used by many groups to reduce sensitivity to small perturbations in 

conformation, e.g., when docking a ligand vs. a receptor.19,20 Cherfils et al.19 replaced amino-acid 

residues with spheres of varying size and performed docking to maximize the buried surface area.  

In this sense, our research group has recently introduced the novel computer-aided molecular 

design scheme TOMOCOMD-CARDD (acronym of TOpological MOlecular COMputer Design-

Computer Aided “Rational” Drug Design).21-23 This method has been developed to generate molecular 

descriptors based on the linear algebra theory. The approach describes changes in the electron 

distribution with time throughout the molecular backbone. It has been successfully employed in 

QSPR/QSAR studies,24-28 including studies related to nucleic acid-drug interactions.29 One of the 

applications involved the prediction of the anthelmintic activity of novel drugs.24,30 More recently, the 

TOMOCOMD-CARDD approach has been applied to the fast-track experimental discovery of novel 

paraphistomicide drugs-like compounds.31 Codification of chirality and other 3D structural features 

constitutes another advantage of this method.32 The latter opportunity has allowed the description of 

the significance-interpretation and the comparison to other molecular descriptors.23,33  

The main aim of this paper is to propose an extended TOMOCOMD approach to account for 

protein structure. In the present study, we propose a total and local definition of protein linear indices 

of the “macromolecular pseudograph’s α-carbon atom adjacency matrix”. In order to test the QSAR 

applicability of the present approach, we will develop quantitative models to describe protein stability 

effects for a complete set of alanine substitutions in Arc repressor. 

 

 



2. Theoretical approach 

2.1 Protein linear indices of the “macromolecular pseudograph’s α-carbon atom adjacency 

matrix” 

The general principles of the linear indices of the “molecular pseudograph`s atom adjacent matrix” 

for small-to-medium sized organic compounds have been explained in some detail elsewhere. 

However, an extended overview of this approach will be given in this work.  

First, in analogy to the molecular vector X used to represent organic molecules (see references 28 

and 29) we introduce here the macromolecular vector (Xm). The components of this vector are numeric 

values, which represent a certain side-chain amino-acid property. These properties characterize each 

kind of amino-acid (R group) within a protein. Such properties can be z-values,11 side-chain isotropic 

surface area (ISA) and atomic charges (ECI) of the amino-acid,14 hydropathy index (Kyte-Doolittle 

scale; HPI)15 and other hydrophobicity scales such as Hopp-Woods,16 and so on. For instance, the 

z1(AA) scale of the amino-acid AA takes the values z1(V) = -2.69 for valine, z1(A) = 0.07 for alanine, z1(M) 

= 2.49 for methionine and so on.11,14 Table 1 depicts several side-chain descriptors for the natural 

amino-acids.11,14,15  

Table 1. Descriptors for the Natural Amino Acids.11,14-16 
z-scale11,14 

Amino Acids z1 z2 z3 
Hydrophobicity 
Scale  
(Kyte-Doolittle)15 

 
ISA14 

 
ECI14 

Ala A 0.07 -1.73 0.09 1.8 62.90 0.05 
Val V -2.69 -2.53 -1.29 4.2 120.91 0.07 
Leu L -4.19 -1.03 -0.98 3.8 154.35 0.01 
Ile I -4.44 -1.68 -1.03 4.5 149.77 0.09 
Pro P -1.22 0.88 2.23 -1.6 122.35 0.16 
Phe F -4.92 1.30 0.45 2.8 189.42 0.14 
Trp W -4.75 3.65 0.85 -0.9 179.16 1.08 
Met M -2.49 -0.27 -0.41 1.9 132.22 0.34 
Lys K 2.84 1.41 -3.14 -3.9 102.78 0.53 
Arg R 2.88 2.52 -3.44 -4.5 52.98 1.69 
His H 2.41 1.74 1.11 -3.2 87.38 0.56 
Gly G 2.23 -5.36 0.30 -0.4 19.93 0.02 
Ser S 1.96 -1.63 0.57 -0.8 19.75 0.56 
Thr T 0.92 -2.09 -1.40 -0.7 59.44 0.65 
Cys C 0.71 -0.97 4.13 2.5 78.51 0.15 
Tyr Y -1.39 2.32 0.01 -1.3 132.16 0.72 
Asn N 3.22 1.45 0.84 -3.5 17.87 1.31 
Gln Q 2.18 0.53 -1.14 -3.5 19.53 1.36 
Asp D 3.64 1.13 2.36 -3.5 18.46 1.25 
Glu E 3.08 0.39 -0.07 -3.5 30.19 1.31 

 

 



Thus, a peptide (or protein) having 5, 10, 15,..., n amino-acids can be represented by means of 

vectors, with 5, 10, 15,..., n components, belonging to the spaces  ℜ 5, ℜ 10, ℜ 15,...,ℜ n, respectively. 

Where n is the dimension of the real sets (ℜ n).   

This approach allows us encoding peptides such as VALVGLFVL through out the macromolecular 

vector Xm = [-2.69  0.07  -4.19  -2.69  2.23  -4.19  -4.92  -2.69  -4.19], in the z1-scale (see Table 1). 

This vector belongs to the product space ℜ 9. The use of other scales defines alternative 

macromolecular vectors. 

 

2.2 Local (amino-acid) linear indices of the “macromolecular pseudograph’s α-carbon atom 

adjacency matrix” 

If a protein consists of n amino-acids (vector of ℜ n), then the kth amino-acid linear indices, fk(xmi) 

are calculated as linear map on ℜ n [fk(xmi): ℜ n→ ℜ n; thus fk(xmi): End on ℜ n ] in canonical basis as 

shown in Eq. 1, 
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where, kaij = kaji (symmetric square matrix), n is the number of amino-acids of the protein (α-carbon 

atom in the protein’s backbone) and mXj are the coordinates of the macromolecular vector (Xm) in a 

system of basis vectors of ℜ n. The coordinates of the same vector will be different according to the 

basis vectors chose.34-37 The values of the coordinates depend thus in an essential way on the choice of 

the basis. With the so-called canonical (‘natural’) base, ej denote the n-tuple having 1 in the jth position 

and 0’s elsewhere. In the canonical basis, the coordinates of any vector X coincide with the 

components of this vector.34-37 For that reason, those coordinates can be considered as weights (amino-

acid labels) of the vertices (α-carbon atoms) of the pseudograph of the protein’s backbone. 

The coefficients kaij are the elements of the kth power of the macromolecular matrix M(Gm) of the 

protein’s pseudograph (Gm). Here, M(Gm) = [aij], denote the matrix of fk(xmi) with respect to the 

natural basis. In this matrix n is the number of vertices (α-carbon atoms) of Gm and the elements aij are 

defined as follows:  

 



aij  = 1 if i ≠ j and ek ∈ E(Gm)                                                                                                                                       (2)                                                        

     = 1 if i = j and the amino-acid i has a hydrogen bond between its side-chain and  

                      its main-chain atom 

     = 0 otherwise 

 

where, E(Gm) represents the set of edges of Gm. In this adjacency matrix M(Gm) the row 

i and column i correspond to vertex vi from Gm. The elements aii = 1 are loops in vi. On the other hand, 

the element aij of this matrix represents a bond between an α-carbon atom i and other j. Here, we 

consider only covalent interaction (peptidic bond) and hydrogen-bond interaction (within a chain as 

well as between chains). As a first approximation, we considered both interactions equivalent, taking 

into account the “connectivity of the protein”. The matrix Mk(Gm) provides the number of walks of 

length k linking the α-carbon atom of the amino-acids i and j. Additionally, proteins containing amino-

acids having hydrogen bonds between its side-chain and its main-chain atom are represented as a 

pseudograph. Specifically, the Arc repressor presents this kind of interaction for the amino acid E17, 

where the presence of this intrasubunit hydrogen bond 31 is accounted by means of a loop in its α-

carbon atom of the protein’s backbone (see below). 

Note, that amino-acid’s linear indices are defined as a linear transformation fk(xmi) on an 

macromolecular vector space ℜ n. This map is a correspondence that assigns to every vector Xm in ℜ n 

a vector f(xm) in such a way that: 

 

f(λ1X1 + λ2X2) = λ1f(X1) + λ2f(X2)                                                                                  (3) 

 

for any scalar λ1, λ2 and any vector X1, X2 in ℜ n. The definition equation (1) for fk(xmi) may be 

written as a single matrix equation: 
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Table 2. Definition and Calculation of Five (k = 0-4) Total and Local (Side-Chain Amino-Acid) 
Protein Linear Indices of the “Macromolecular Pseudograph’s α-Carbon Atom Adjacency Matrix” of 
a Bradykinin-Potentiant Pentapeptide. 

Val Lys Trp Ala Ala
 

Pentapeptide Structure (sequence) 
 

Ca

Ca
Ca

Ca
Ca

V A
K A

W

 
Macromolecular ‘Pseudograph’ (Gm) of the α-Carbon 
Atoms (Polypeptide’s backbone) 
Ca

Amino-Acid Residue (Side-Chain: R-Group) 
 

Here, we consider only covalent interaction (peptidic bond), but 
non-covalent interaction (hydrogen-bond and salt bridge 
interaction) can be taken into consideration (within a chain as 
well as between chains) 

Macromolecular Vector: Xm∈ℜ 5  
Xm = [V, K, W, A, A] 
 In the definition of the Xm, as 
macromolecular vector, the one letter 
symbol of the amino-acids indicates the 
corresponding side-chain amino-acid 
property, e.g., z1-values. That is, if we 
write V it means z1(V), z1-values or some 
amino-acid property, which characterizes 
each side-chain in the polypeptide. 
Therefore, if we use the canonical bases of 
R5, the coordinates of any vector Xm 
coincide with the components of that 
macromolecular vector 
[mX] = [-2.69, 2.84, -4.75, 0.07, 0.07] 
[mX]: vector of coordinates of Xm in the 
Canonical basis of R5 (a 5x1matrix) 
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Amino-acid linear indices of zero, first and second order are a linear maps; fk(xmi): ℜ n→ ℜ n  such that, 
f0(V, K, W, A, A) = (1V, 1K, 1W, 1A, 1A) = (-2.69, 2.84, -4.75, 0.07, 0.07) 
f1(V, K, W, A, A) = (1K, 1V+1W, 1K+1A, 1W+1A, 1A) = (2.84, -7.44, 2.91, -4.68, 0.07)  
f2(V, K, W, A, A) = (1V+1W, 2K+1A, 1V+2W+1A, 1K+2A, 1W+1A) = (-7.44, 5.75, -12.12, 2.98, -4.68)  
and whole-peptide linear indices of zero, first and second order are a linear functionals; 
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= f0(V) + f0(K) + f0(W) + f0(A) + f0(A) = -4.46 
= f1(V) + f1(K) + f1(W) + f1(A) + f1(A) = -6.3  
= f2(V) + f2(K) + f2(W) + f2(A) + f2(A) = -15.51 

Amino Acid (AA) z1f0L(xm, AA) z1f1L(xm, AA) z1f2L(xm, AA) z1f3L(xm, AA) z1f4L(xm, AA) 
Val (V) -2.69 2.84 -7.44 5.75 -19.56 
Lys (K) 2.84 -7.44 5.75 -19.56 14.48 
Trp (W) -4.75 2.91 -12.12 8.73 -36.36 
Ala (A) 0.07 -4.68 2.98 -16.8 11.71 
Ala (A) 0.07 0.07 -4.68 2.98 -16.8 
Pentapeptide  -4.46 -6.3 -15.51 -18.9 -46.53 



or in a more compact form, 

 

fk(xmi) = [mX’]k = Mk(Gm)[mX]                                                                                        (5) 

 

where [mX] is a column vector (a nx1 matrix) of the coordinates of Xm in the canonical base of ℜ n and 

Mk the kth power of the matrix M(Gm) of the molecular pseudograph (map’s matrix). Table 2 

exemplifies the calculation of fk(xm) for bradykinin-potentiating pentapeptides previously used in 

QSAR studies.14 

 

2.3 Total (whole-molecule) linear indices of the “macromolecular pseudograph’s α-carbon atom 

adjacency matrix” 

Total protein linear indices are a linear functional (some mathematicians use the term linear form, 

which means the same as linear functional) on ℜ n.27-30 That is, the kth total protein linear indices are a 

linear maps from ℜ n to the scalar ℜ [ fk(xm): ℜ n→ ℜ ]. The mathematical definition of these 

molecular descriptors is the following: 
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where n is the number of amino-acids and fk(xmi) are the amino-acid’s linear indices (linear maps) 

obtained by Eq. 1. Then, a linear form fk(xm) can be written in matrix form, 

 

fk(xm) = [u]t [mX’]k                                                                                                           (7) 

 

or 

 

fk(xm) = [u]t Mk[mX]                                                                                                         (8) 

for all macromolecular vector Xm∈ℜ n. [u]t is a n-dimensional unitary row vector. As can be seen, the 

kth total linear indices are calculated by summing the local (amino-acid) linear indices of all amino-

acids in the protein. 



2.4 Local (amino acid-type) linear indices of the “macromolecular pseudograph’s α-carbon atom 

adjacency matrix” 

In addition to amino-acid linear indices computed for each amino-acid in the protein, a local-

fragment (amino acid-type) formalism can be developed. The kth amino acid-type linear indices of the 

macromolecular pseudograph’s α-carbon atom adjacency matrix”are calculated by summing the kth 

amino-acid linear indices of all amino-acids of the same amino-acid type in the proteins. 

Consequently, if a protein is partitioned in Z molecular fragment, the total protein linear indices 

can be partitioned in Z local protein linear indices fkL(xm), L = 1, …, Z. That is to say, the total protein 

linear indices of order k can be expressed as the sum of the local protein linear indices of the Z 

fragments of the same order: 
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In the amino acid-type linear indices formalism, each amino-acid in the protein is classified into an 

amino acid-type (fragment), such as amino-acid with R apolar, R polar uncharged, R (+) charged, R (-) 

charged, and so on. For all data sets, including those with a common molecular scaffold as well as 

those with very diverse structure, the kth fragment (amino acid-type) linear indices provide much 

useful information. 

Any local protein’s linear index has a particular meaning, especially for the first values of k, where 

the information about the structure of the fragment is contained. Higher values of k relate to the 

environment information of the fragment considered within the macromolecular pseudograph (Gm).  

In any case, whether a complete series of indices is considered, a specific characterization of the 

chemical structure is obtained (whole protein or fragment), which is not repeated in any other protein. 

The generalization of the descriptors to “superior analogs” is necessary for the evaluation of situations 

where only one descriptor is unable to bring a good structural characterization.38 The local 

macromolecular indices can also be used together with the total ones as variables for QSAR/QSPR 

modeling of properties or activities that depend more on a region or a fragment than on the 

macromolecule as a whole. 

 

 



3. Results and discussion 

3.1 Development of the classification model 

The development of a discriminant function that permits the classification of mutants as near wild-

type stability or reduced stability is a key of the present approach to describe the protein stability 

effects of a complete set of alanine substitutions in Arc repressor.  

Here we considered a general data set of 53 A-mutants, 28 of them having near wild-type stability 

(1-28) and the rest being mutants with reduced stability (29-53). This data set was randomly divided 

into two subsets, one containing 41 mutants (21 having near wild-type stability and 20 of reduced 

stability) was used as a training set, and the other containing 12 mutants (7 having near wild-type 

stability and 5 of reduced stability) was used as a test set.  

The tolerance parameter (proportion of variance that is unique to the respective variable) used was the 

default value for minimum acceptable tolerance, which is 0.01. Forward stepwise was fixed as the 

strategy for variable selection. The principle of parsimony (Occam's razor) was taken into account as 

strategy for model selection. In this connection, we select the functions with higher statistical 

signification but having as few parameters (ak) as possible. The classification model obtained is given 

below together with the statistical parameters of LDA: 

 

Class = -27.661 -0.308Z1f0(xm) +0.490Z2f0(xm) +0.219HPIf1(xm) +9.304x10-11ISAf15(xm)  

               +1.272ECIf0(xm)                                                                                               (10)                                       

N = 41    λ = 0.314    D2 = 8.72    F(5, 35) = 15.252    p(F) < 0.0000 

 

where λ is the Wilks’s statistic, D2 is the squared Mahalanobis distance and F is the Fisher ratio. The 

Wilks’ λ statistic for overall discrimination can take values in the range of 0 (perfect discrimination) to 

1 (no discrimination). The Mahalanobis distance indicates the separation of the respective groups.  It 

shows whether the model possesses an appropriate discriminatory power for differentiating between 

the two respective groups. 

These statistics indicate that model (10) is appropriate for the discrimination of near wild-type 

stability/reduced stability mutants studied here. The obtained model has a positive predictive value of 

95.23% (20/21) of near wild-type stability mutants and a negative predictive value of 100.00% (20/20) 

of reduced stability mutants in the training set, for an accuracy (global good classification) of 97.56% 

(40/41) This model showed a high Matthews´ correlation coefficient (MCC) of 0.952; MCC quantified 



the strength of the linear relation between the molecular descriptors and the classifications. In Table 3 

we give the classification of mutants in the training set together with their posterior probabilities 

calculated from the Mahalanobis distance.  

 
Table 3. Results of the LDA and Canonical Analyses of the Arc A-Mutants in the Training and Test 
Sets. 

Mutant Classb ΔP%c P%(H)d P%(P)d Scoree Mutant Classb ΔP%c P%(H)d P%(P)d Scoree 

Mutants with near wild-type stability 
1PA8-st6a H 97.98 0.99 0.01 1.64 15GA3-st6 H 97.39 0.99 0.01 1.98 
2SA35-st6 H 99.61 1.00 0.00 2.09 16MA1-st6a H 61.84 0.81 0.19 0.98 
3NA34-st11 H 94.01 0.97 0.03 0.06 *17Arc-st11 H -11.43 0.44 0.56 -0.47 
4NA11-st6a H 99.20 1.00 0.00 2.49 18SA5-st6 H 99.86 1.00 0.00 2.32 
5QA39-st11 H 33.19 0.67 0.33 -0.17 19RA13-st6 H 99.63 1.00 0.00 2.19 
6GA52-st11 H 85.23 0.93 0.07 -0.23 20KA46-st11 H 0.30 0.50 0.50 -0.26 
7KA6-st6a H 60.44 0.80 0.20 0.98 21EA17-st6a H 99.92 1.00 0.00 2.47 
8RA16-st6 H 99.86 1.00 0.00 2.34 22VA18-st6 H 78.84 0.89 0.11 0.92 
9VA25-st6 H 79.15 0.90 0.10 0.92 23RA23-st11 H 74.08 0.87 0.13 -0.01 
10MA4-st6 H 61.83 0.81 0.19 0.98 24KA24-st11 H 79.48 0.90 0.10 0.42 
11Arc-st6a H 98.94 0.99 0.01 1.90 25EA43-st6 H 99.17 1.00 0.00 1.57 
12EA27-st6 H 99.70 1.00 0.00 2.43 26EA28-st11aH 97.49 0.99 0.01 0.19 
13KA2-st6 H 98.84 0.99 0.01 2.68 27MA7-st6 H 60.44 0.80 0.20 0.98 
14QA9-st6 H 99.29 1.00 0.00 2.12 28DA20-st6 H 100.00 1.00 0.00 2.89 

Mutants with reduced stability 
29IA51-st11 P -97.49 0.01 0.99 -1.94 42LA21-st11 P -99.16 0.00 1.00 -1.89 
30GA49-st11a P -60.76 0.20 0.80 -0.16 43RA31-st11 P -95.66 0.02 0.98 -0.60 
31LA19-st6 P -0.18 0.50 0.50 0.48 44MA42-st11P -98.26 0.01 0.99 -1.50 
32GA30-st11 P -58.82 0.21 0.79 -0.15 *45SA32-st1aP 29.74 0.65 0.35 -0.31 
33RA50-st11 P -36.54 0.32 0.68 -0.13 46YA38-st11 P -97.77 0.01 0.99 -1.13 
34KA47-st11 P -1.44 0.49 0.51 -0.27 47WA14-st11P -99.96 0.00 1.00 -2.45 
35PA15-st11a P -44.82 0.28 0.72 -0.75 48RA40-st11 P -99.17 0.00 1.00 -2.04 
36SA44-st11 P -99.93 0.00 1.00 -2.08 49VA22-st11 P -93.05 0.03 0.97 -1.45 
37NA29-st11 P -71.70 0.14 0.86 -0.25 50EA36-st11aP -12.52 0.44 0.56 -1.16 
38VA33-st11 P -94.26 0.03 0.97 -1.48 51IA37-st11 P -99.59 0.00 1.00 -2.10 
39EA48-st11 P -98.66 0.01 0.99 -1.01 52VA41-st11 P -96.61 0.02 0.98 -1.57 
40LA12-st11 P -99.21 0.00 1.00 -1.90 53FA45-st11 P -99.98 0.00 1.00 -2.30 
41FA10-st6a P -74.79 0.13 0.87 0.33       

*Mutants that are misclassified by model (10). aCompounds in test set. bExperimental stability of the Arc A-mutants: H, 
near wild-type stability mutants; P, reduced stability mutants. cΔP% = [P(H-group) - P(P-group)]x100. dPercentage of 
probability with which the mutants is predicted as reduced stability/near wild-type stability mutants, respectively. 
eCanonical scores predicted using canonical analysis (model 11). 

 

The most important criterion to accept or not a discriminant model, such as model (10), is based on 

the statistics for the test set. Model (10) classifies correctly 11 of 12 mutants, for an accuracy of 

91.67%, with a MCC = 0.837. In Table 3, we give the classification of mutants in the test set. If we 

considered the data set and the test set (full set) the accuracy was 96.23% (51/53). 



Canonical analysis is used here to test both the ability of protein’s linear indices to discriminate 

between the two groups of Arc A-mutants and to order these mutants accordingly with their stability 

profile. 

Protein’s linear indices & LDA Arc A-Mutant stability canonical analysis principal root: 

 

Arc Mutants-root = -8.636 -0.155Z1f0(xm) -0.010Z2f0(xm) +0.010HPIf1(xm)  

                                +1.44x10-11ISAf15(xm) +0.265ECIf0(xm)                                           (11)                                   

N = 41  λ = 0.314   Rcanc = 0.824  χ2 = 41.439   Mean (+) = 1.225  Mean (-) = -1.287 

p(χ2) < 0.0000 

 

The canonical transformation of the LDA results yields one canonical root with a good canonical 

regression coefficient (0.82). Chi-squared test allowed us to test the statistical signification of this 

analysis with a p-level <0.0000.  
 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 1. Overall ascendant tendency of canonical scores plotted in the same order in which tm 
increases.   
 

When LDA analysis is applied to solve the two-group classification problem, two classification 

functions are always found.39,40 Medicinal chemists used to report the function obtained by taking the 
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difference between these two functions when developing QSAR studies.41-46 However, we cannot use 

these two classification functions to evaluate all compounds and obtain a bivariate stability map 

because they are not orthogonal.40,47  To solve this problem we used canonical analysis. In this case the 

dimensional reduction caused by canonical analysis makes it possible to obtain a 1-dimension stability 

map.47 That is the same that we can order all compounds taking into account its canonical scores. The 

canonical scores of all A-mutants of Arc repressor appear in Table 3.  

We can detect an overall ascendent tendency of canonical scores when they are plotted in the 

same order as stability (tm) increases (see Figure 1). As it is expected, the overall mean of canonical 

root scores for the group of near wild-type stability mutants has an opposite sign (+) with respect to 

the other group (-).47  

 

3.2 Comparison with other approaches.  

Recently, some in silico techniques have been used to develop classification models that permits us 

compute biological stability for each alanine-mutan of Arc repressor.48 The relative comparison will 

be based on the kind of method use for deriving the QSAR and their statistical parameter, the explored 

molecular descriptors, the overall accuracy (%), Matthews´ correlation coefficient and the validation 

method used. Table 4 depicts the comparison between TOMOCOMD-CARDD method and others 

reported approaches48 for the stability of A-mutants of Arc repressor. 

Table 4. Comparison Between TOMOCOMD-CARDD Method and others Approaches for Stability of 
A-Mutants of Arc Repressor. 

Structure-Based Classification Models of Arc A-mutants stability  Models’ features 
to be compareda Linear 

Indices  D-Fire Surface Volume Log P Refractivity 

Accuracy (%) 97.56 81.1 76.9 70.7 62.3 59.0 60.0 
%Nwt b 95.23 71.4 92.9 63.6 53.6 80.8 77.3 
%RS b 100 92.0 58.3 78.9 72.0 15.4 38.9 
%NC b 0.0 0.0 3.8 22.6 0.0 26.4 24.5 
N 41 53 53 53 53 53 53 
Wilks’λ (U-statistics) 0.314 0.56 0.79 0.85 0.92 0.99 0.97 
F 15.25 39.05 13.9 8.8 4.2 0.5 1.8 
p-level 0.00 0.00 0.00 0.00 0.00 0.5 0.2 
MCC 0.952 0.643 0.552 0.428 0.259 0.047 0.175 
Validation Method 

Validation methodc i ii ii ii ii ii ii 
Accuracy (test set)d 91.67 - - - - - - 
%TL-25%-o

 b - 79.5 71.8 61.5 56.4 48.7 61.5 
aLinear indices are reported in this work; , D-Fire, Surface, Volume, Log P and Refractivity are reported by R de 
Armas et al.48  b Parameters verifying model quality:  %Nwt, %RS, %NC, %TL-25%-O are the Near wild-type group, 
Reduced stability group, Non-classified and total after leave-25%-out Percentages of good classification. cValidation 
methods are: i) test set, and ii) leave-25%-out. d test set of 12 A-mutants of Arc repressor. 



As can be seen, the accuracy in the training set (97.56%) of TOMOCOMD-CARDD model was 

higher than of other reported LDA equations (see Table 4). In addition the Wilks’ λ statistic for our 

model was better than those reported in the others models.48 

Validation of the models is the other major bottleneck in QSAR.49,50 One of the most popular 

validation criteria is internal cross-validation (leave-one-out, leave-n-out, leave-25%-out and so on). 

Nevertheless, there can exist a lack of correlation between the good results in internal cross-validation 

and the high predictive ability of QSAR models.49,50 Thus, the good high behavior in internal cross-

validation appears to be the necessary but not the sufficient condition for the models to have a high 

predictive power. In this sense, Golbraikh and Tropsha emphasize that the predictive ability of a 

QSAR model can only be estimated using an external test set (external validation) of compounds that 

was not used for building the model and formulated a set of criteria for evaluation of predictive ability 

of QSAR model.50 In this case our model show an accuracy of 91.67% for the test set. It is reasonable 

to expect some decrease in overall predictability of predicting sets with respect to training series for a 

simple reason; the model is developed to fit the points in training series, and therefore data points in 

predicting series are never used to develop it.  

 

3.3 Modeling the stabilities of a complete set of single alanine-substitution mutants of the arc 

repressor of bacteriophage P22 

The second step in modeling the stability effects of a complete set of A-substitution mutants was to 

find a way to predict the melting temperature (tm) of such A-mutants of Arc repressor. With this aim, 

we conform a data set of 48 proteins. Five A-mutants (49-53: VA22-st11, EA36-st11, IA37-st11, 

VA41-st11 and FA45-st11) were extracted due to their non-accurate tm values (< 20 oC), which is not 

useful for MLR analysis. 

By using the total protein linear indices of the macromolecular pseudograph’s α-carbon atom 

adjacency matrix and MLR analysis we developed the following QSA(S)R [quantitative structure-

activity(stability) relationship] lineal model to describe tm for these A-mutants of the Arc repressor: 

 

tm (oC) = 31.055(±23.173) +3.824(±0.526)Z2f0(xm) +0.0013(±0.0002)ISAf3(xm)  

               +0.192(±0.020)HPIf2(xm) -0.929(±0.183)Z2f1(xm) +2.437(±0.399)Z3f0(xm)  

               -0.348(±0.060)Z3f2(xm)                                                                                   (12)  

N = 45 R = 0.90 R2 = 0.81 s = 4.29 q2 = 0.72 scv = 4.79 F(6.38) = 26.488 p<0.0000 



 

where N is the size of the data set, R is the regression coefficient, s is the standard deviation of the 

regression, F is the Fischer ratio and q2, scv are the squared correlation coefficient and the standard 

deviation of the cross validation performed by the LOO procedure, respectively. In Table 5 we give 

the observed and calculated tm values by model (12) for the training set, and in Figure 2 is illustrated 

the linear relationships between them. 

 
Table 5. Experimental and Calculated Values of Melting Temperature (tm) Obtained by Linear Model. 

Mutant Obs.a Cal.b Res.c ResCV
d Mutant Obs.a Cal.b Res.c ResCV

d 
1PA8-st6 74.1 outlier 25EA43-st6 56.1 53.6 2.5 3.0 
2SA35-st6 63.4 64.8 -1.4 -2.1 26EA28-st11 55.7 56.1 -0.4 -0.4 
3NA34-st11 63.0 58.3 4.7 7.5 27MA7-st6 55.5 53.0 2.5 2.6 
4NA11-st6 62.1 54.5 7.6 8.8 28DA20-st6 55.3 54.4 0.9 1.2 
5QA39-st11 61.4 60.4 1.0 1.2 29IA51-st11 50.9 51.9 -1.0 -1.1 
6GA52-st11 60.9 63.7 -2.8 -3.8 30GA49-st11 48.7 51.8 -3.1 -3.4 
7KA6-st6 59.6 53.0 6.6 6.9 31LA19-st6 48.3 49.1 -0.8 -0.9 
8RA16-st6 59.5 62.9 -3.4 -4.1 32GA30-st11 47.9 41.4 6.5 8.1 
9VA25-st6 59.3 60.3 -1.0 -1.1 33RA50-st11 47.9 47.6 0.3 0.4 
10MA4-st6 59.2 52.0 7.2 7.7 34KA47-st11 47.2 46.3 0.9 1.0 
11Arc-st6 59.0 59.3 -0.3 -0.3 35PA15-st11 46.6 44.6 2.0 2.4 
12EA27-st6 58.8 62.3 -3.5 -3.8 36SA44-st11 46.3 42.3 4.0 6.5 
13KA2-st6 58.7 56.7 2.0 2.6 37NA29-st11 45.3 46.6 -1.3 -1.5 
14QA9-st6 58.4 62.1 -3.7 -3.9 38VA33-st11 44.1 45.2 -1.1 -1.3 
15GA3-st6 58.1 62.3 -4.2 -4.6 39EA48-st11 43.2 48.9 -5.7 -6.2 
16MA1-st6 58.0 52.7 5.3 5.6 40LA12-st11 42.3 43.1 -0.8 -0.8 
17Arc-st11 57.9 51.3 6.6 7.3 41FA10-st6 40.6 42.5 -1.9 -2.3 
18SA5-st6 57.5 61.3 -3.8 -4.0 42LA21-st11 39.6 41.1 -1.5 -1.6 
19RA13-st6 57.3 59.0 -1.7 -2.1 43RA31-st11 37.1 42.8 -5.7 -7.0 
20KA46-st11  57.1 outlier 44MA42-st11 35.6 42.0 -6.4 -7.0 
21EA17-st6 57.0 61.0 -4.0 -4.3 45SA32-st11  33.5 outlier 
22VA18-st6 56.9 57.7 -0.8 -0.8 46YA38-st11 33.0 37.6 -4.6 -5.5 
23RA23-st11 56.7 47.7 9.0 10.6 47WA14-st11 31.5 37.1 -5.6 -8.7 
24KA24-st11 56.3 53.2 3.1 3.4 48RA40-st11 31.2 33.6 -2.4 -4.8 

aExperimental melting temperature, tm (oC).54 Proteins are arranged in order of decreasing tm. Mutants 49-53 (VA22-st11, 
EA36-st11, IA37-st11, VA41-st11 and FA45-st11) were extracted of QSAR study due to its non-accurate tm values (< 20 
oC), which is not useful for MLR analysis. st6 and st11 refer to C-terminal sequences of the mutant proteins.54 bCalculated 
tm values by linear model (Eq. 12). cResidual: tm(Obs.) - tm(Cal.). dResidual by LOO cross-validation procedures (Deleted 
Residual). 

 

Model (12) explains 81% of the variance of the experimental tm. The predictive ability of model (12) is 

evidenced by the value of the LOO press statistics (for example q2 > 0.5 and scv).49,50 

In developing this model only three mutants (1PA8-st6; 20KA46-st11 and 45SA32-st11) were 

detected as statistical outliers.51,52 Outliers detection was carried out using the following standard 



statistical test: residual, standardized residual, studentized residual and Cooks’distance.52 Mutant 

(PA8) is only significantly more stable than wild type. The tm of this mutant protein is about 15oC 

higher than that of the wild-type parent (see Tables 4 and 5), and the free energy of unfolding is 

increased by 2.9 kcal mol-1 compared with wild type.53  

 

 

 

 

 

 

 

 

 

 
Figure 2. Correlation between experimental and calculated (by Eq. 12) tm for A-mutants of Arc 
repressor. 
 

Different protein folding may be the reason for the lack of linear regression between protein’s 

linear indices and stability (tm) for these mutants; leading to a nonlinear dependence between tm and 

protein’s linear indices. In this case other terms should be taken into consideration such as cooperative 

salt-bridges and hydrogen-bond formation, hydrophobic forces, steric terms, and so on. In this sense, 

far from strong quantitative correlations between stability and structural factors have been obtained in 

a previous study. 53 For example, when the set of tm values were tested for linear correlations with 

fractional side-chain solvent accessibility, with changes in buried surface area, with average side-chain 

B-factors, and with the number of side-chain atoms or total atoms within 6 Å of the atoms deleted by 

the alanine substitution, the pairwise correlation coefficient (r2) ranges from 0.21 to 0.38.53 Thus, even 

though most substitutions of alanine for hydrophobic-core residues are destabilizing, there is no simple 

relationship between the size of the replaced core residue and the destabilizing effect.53  
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Therefore, the use of other non-linear models was required; a non-linear model that retains 

linearity in the equation, but uses non-linear methods to fit them. This is the piece-wise method, 39 

which produces two linear equations by clustering observations into two groups according to their 

absolute magnitude. The best fitted piecewise model was: 

 

tm (oC)<BKPT = 51.141 +0.641Z2f0(xm) -0.117 Z2f1(xm) +0.455Z3f0(xm) -0.101Z3f2(xm) +6.57x10-5ISAf3(xm) 

+0.03HPIf2(xm)  

tm (oC)>BKPT = 58.741 +2.201Z2f0(xm) -0.075Z2f1(xm) +2.459Z3f0(xm) -0.385Z3f2(xm) +0.000597ISAf3(xm) 

+0.184HPIf2(xm)                                                   (13) 

N = 41   R = 0.97   R2 = 93.43   Bkpt = 51.87    p <0.0000 

 

where R (piecewise regression coefficient), for gradual variance explanation, takes values ranging 

from 0 (non-piecewise regression) to 1 (explanation of 100% of variance). The probability of error 

after acceptance of the piecewise hypothesis, p was checked for an absolute value > 0.05. The 

parameter break-point (Bkpt) is the tm value, which mark the frontier between the two groups. The 

resultant regression coefficient suggested a highly significant piecewise linear correlation between 

observed and predicted values (p < 0.05). In Table 6, we depict the observed, calculated, and residual 

values of tm for the data set. Figure 3 depicts the linear relationships between observed and calculated 

tm values in both groups. 

The main difficulty of the linear piecewise regression is its limitation to predict new mutants 

whose stability profiles are unknown. The problem here is: which equation should be applied to a new 

mutant not considered in this study? The Bkpt value (51.87), perfectly agrees with an experimental 

scale previously proposed.53 The same scale was used for grouping mutants into the two studied 

groups in our LDA approach. For this reason, we can use the LDA and piecewise models in 

combination to classify and to predict the stability of the mutans’ Arc homodimers. 

As can be observed in the obtained models, the included variables are related with the factors that 

influence on the stability and this one with the structural features of Arc dimer. In this sense, the 

protein’s linear indices calculated using z1, z2, z3, ISA, ECI and HPI values, as amino-acid (side-chain) 

properties are included in most of the developed models. These values are related to hydrophilicity, 

bulk, and electronic properties. For this reason, it is possible to determine the nature of the driving 

forces of the Arc repressor folding, e.g., hydrophobic, steric, or electronic.  



Table 6. Experimental and Calculated Values of Melting Temperature (tm) Obtained by Non-Linear 
Model. 
Mutant Obs.a Cal.b Res.c Mutant Obs.a Cal.b Res.c 

1PA8-st6 74.1 outlier 25EA43-st6 56.1 56.8 -0.7 
2SA35-st6 63.4 60.9 2.5 26EA28-st11 55.7 58.2 -2.5 
3NA34-st11 63.0 60.0 3.0 27MA7-st6 55.5 58.1 -2.6 
4NA11-st6 62.1 58.0 4.1 28DA20-st6 55.3 57.9 -2.6 
5QA39-st11 61.4 58.9 2.5 29IA51-st11 50.9 49.7 1.2 
6GA52-st11 60.9 60.1 0.8 30GA49-st11 48.7 50.9 -2.2 
7KA6-st6 59.6 58.1 1.5 31LA19-st6 48.3 46.9 1.4 
8RA16-st6 59.5 57.7 1.8 32GA30-st11 47.9 41.7 6.2 
9VA25-st6 59.3 59.5 -0.2 33RA50-st11 47.9 47.1 0.8 
10MA4-st6 59.2 58.0 1.2 34KA47-st11 47.2 43.4 3.8 
11Arc-st6 59.0 59.3 -0.3 35PA15-st11 46.6 42.8 3.8 
12EA27-st6 58.8 59.2 -0.4 36SA44-st11 46.3 45.7 0.6 
13KA2-st6 58.7 58.7 0.0 37NA29-st11 45.3 46.6 -1.3 
14QA9-st6 58.4 59.0 -0.6 38VA33-st11 44.1 43.8 0.3 
15GA3-st6 58.1 59.6 -1.5 39EA48-st11 43.2 47.1 -3.9 
16MA1-st6 58.0 58.1 -0.1 40LA12-st11 42.3 41.7 0.6 
17Arc-st11 57.9 58.8 -0.9 41FA10-st6 40.6 39.5 1.1 
18SA5-st6 57.5 59.6 -2.1 42LA21-st11 39.6 39.9 -0.3 
19RA13-st6 57.3 57.1 0.2 43RA31-st11 37.1 42.2 -5.1 
20KA46-st11 57.1 55.6 1.5 44MA42-st11 35.6 40.7 -5.1 
21EA17-st6 57.0 58.9 -1.9 45SA32-st11 33.5 outlier 
22VA18-st6 56.9 59.0 -2.1 46YA38-st11 33.0 35.2 -2.2 
23RA23-st11 56.7 55.9 0.8 47WA14-st11 31.5 32.3 -0.8 
24KA24-st11 56.3 57.7 -1.4 48RA40-st11 31.2 30.3 0.9 
aExperimental melting temperature, tm (oC).54 Proteins are arranged in order of decreasing tm. Mutants 49-53 (VA22-st11, 
EA36-st11, IA37-st11, VA41-st11 and FA45-st11) were extracted of QSAR study due to its non-accurate tm values (< 20 
oC), which is not useful for Piece-wise method. st6 and st11 refer to C-terminal sequences of the mutant proteins.54 
bCalculated tm values by non-linear model (Eq. 12). cResidual: tm(Obs.) - tm(Cal.).  
 

The preponderance of hydrophobic and electronic effects in the obtained equations (10-13) over 

other types of protein’s linear indices clearly indicates the importance of the hydrophobic and 

electronic side chain factor in the folding of Arc dimer. This situation means that the stability profile 

of wild-type Arc and its A-mutants results in topologic/topographic-controlled protein’s backbone 

interactions. 

 

4. Concluding remarks 

We would expect computational protein science to have a similar effect on the search for new 

vaccines, receptors, drugs, and so on as molecular modeling and QSAR have had on search for new 

drugs. Thus, the definition of novel macromolecular descriptors that could explain different bio-



macromolecular properties by means of a QSAR is necessary. In this sense, the approach described 

here represents a novel and very promising way to bioinformatics research.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Correlation between experimental and calculated (by Eq. 13) tm for A-mutants of Arc 
repressor. 
 

We have shown here that the use of the protein’s total linear indices is able to account for 

thermodynamic parameters for wild-type and mutant Arc proteins. The resulting quantitative models 

are significant from a statistical point of view. A LOO cross-validation procedure revealed that the 

QSA(S)R models had a good predictability. These models are not only good enough to predict 

thermodynamic parameter of the folding of mutants of Arc dimer repressor, but also permit the 

interpretation of the driving forces of such folding processes. Nevertheless, future work shall be 

directed to compare the methodology introduced here with other novel methodologies under the same 

conditions. 

 

5. Experimental section 

5.1 TOMOCOMD-CAMPS software 

TOMOCOMD is an interactive program for molecular design and bioinformatics research.24 The 

program is composed by four subprograms, each one of them dealing with drawing structures 

(drawing mode) and calculating 2D and 3D molecular descriptors (calculation mode). The modules are 

named CARDD (Computed-Aided ‘Rational’ Drug Design), CAMPS (Computed-Aided Modeling in 
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Protein Science), CANAR (Computed-Aided Nucleic Acid Research) and CABPD (Computed-Aided 

Bio-Polymers Docking). In this paper we outline salient features concerned with only one of these 

subprograms: CAMPS.  This subprogram was developed based on a user-friendly philosophy. That is 

to say, this computer graphics software shows a great efficiency of interaction with the user, without 

prior knowledge of programming skills (e.g. a practicing pharmaceutic and organic chemist, teacher, 

university student, and so on). The calculation of total and local macromolecular linear indices for any 

peptide or protein was implemented in the TOMOCOMD-CAMPS software.24  

5.2 Arc dimer structure and the equilibrium stabilities of a complete set of single alanine-

substitution mutants of the Arc repressor of bacteriophage P22 

Much work is currently underway to determine the contribution of individual residues to the 

overall fold and stability of a protein.54-58 This is a very challenging problem due to the complexity of 

both the native and unfolded states, and the transition between them. Robert Sauer has done some of 

the seminal work in this area on the Arc repressor.53,59 This protein provides an attractive system to 

address this issue because it is small (53 AAs), and amenable to genetic and biophysical studies.60-62 

This is a homodimer protein with a globular domain formed by the intertwining of their monomers. It 

secondary structure consists on two anti-parallels β-sheets from residues 8-14, and α-helices formed 

by residues 15-30 and 32-48.53  

Several side-chain hydrogen bond and salt bridge interactions are involved in the Arc crystal 

structure. An exhaustive representation of these interactions can be observed in some detail elsewhere 

(see Fig 1b in reference 53). Nevertheless, an overview of these electrostatic interactions in Arc 

repressor structure will be given. Non-covalent interactions take place:53 

i) Between side chain in the same subunit (R16-D20, D20-R23, N29-E36, E36-R31, E36-R40, 

E43-K46, E43-K47) and; those between side chains in different subunits (E28-R50, R40-S44, R40-

F48). 

ii) Between a side chain and main-chain atom intersubunit (W14-N34, N34-R13) and; those 

between a side chain and main-chain atom intrasubunits (E17-E17, S32-S35, S44-R40).  

The data of Arc repressor mutant was taken from the literature.53 In this paper, Alanine 

substitutions were constructed at each of the 51 non-alanine positions in the wild-type Arc sequence. 

To avoid intracellular proteolysis and purification difficulties,62,63 these authors constructed the alanine 

substitution mutant (A-mutants) in backgrounds containing the carboxy-terminal extensions (His)6 



(designated st6) or (His)6-Lys-Asn-Gln-His-Glu (designated st11). These tail sequences allow affinity 

purification, reduce degradation and cause no significant changes in protein stability.62  

Milla et al. 53 subjected each purified mutant of Arc to thermal and urea denaturation experiments. 

Stability of the proteins was checked based on melting temperature (tm). 53 The values of tm for 53 Arc 

homodimers reported by these authors are given in Tables 3-5. The Arc mutants are grouped into two 

categories (see Table 3): 1) mutants with near wild-type stability and, 2) mutants with reduced 

stability. The first group also includes one mutant with increased stability (PA8-st6). Otherwise, the 

second one includes five unfolded mutants, even at low temperatures (< 20 oC) and absence of 

denaturants.  

In equilibrium and kinetic unfolding-refolding studies only native Arc dimers and denatured 

monomers are significantly populated. Thus, folding and dimerization are concerted processes.53,63,64 

For this reason, it is important to remember that tm refers to unfolding of the Arc homodimer. Then, 

one must take into consideration that each single mutation changes two side chains in the Arc dimer, 

being stability effects roughly twice these observed for monomeric proteins. Moreover, changes in 

stability may arise due to mutation disrupts of a native interaction, when the native structure of the 

mutant undergoes relaxation, or because of the change on the properties of the denatured mutant 

protein.53,55-58  

5.3 Statistical analysis  

Linear Discrimination Analysis (LDA), Linear Multiple Regression (LMR) and the non-linear 

estimation analysis, Piecewise Linear Regression (PLR) were used to obtain quantitative models. 

These statistical analyses were carried out with the STATISTICA software package.40  

LDA is used in order to generate the classifier function on the basis of the simplicity of the 

method.41,65 To test the quality of the derived discriminant functions we used the Wilks’ λ and the 

Mahalanobis distance. The classification of cases was performed by means of the posterior 

classification probability, which is the probability to which a respective case belongs to a particular 

group, i.e., mutants with near wild-type stability (H) or mutants with reduced stability (P) (see Table 

3). In developing this classification function the values of 1 and -1 were assigned to H and P mutants. 

The quality of the ADL-model was also determined by examining the percentage of good 

classification and the proportion between the cases and variables in the equation. We also considered 

the linear discriminant canonical analysis statistics such as: canonical regression coefficient (Rcanc), 

chi-squared and p-level [p(χ2)].  



A simple linear and other more complex non-linear model was obtained using LMR and PLR as 

statistic techniques, respectively. The quality of the models was determined examining the statistic 

parameters of multivariable comparison of regression and cross-validation procedures. In this sense, 

the quality of models was determined by examining the regression coefficients (R), determination 

coefficients (R2), Fisher-ratio’s p-level [p(F)], standard deviations of the regression (s) and the leave-

one-out (LOO) press statistics (q2, scv).51 In recent years, the LOO press statistics (e.g., q2) has been 

used as a means of indicating predictive ability. Many authors consider high q2 values (for instance, q2 

> 0.5) as indicator or even as the ultimate proof of the high-predictive power of a QSAR model.49,51 
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