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Abstract 
Motivation: Predicting HIV resistance to drugs is one of many 
problems for which bioinformaticians have implemented and 
trained machine learning methods, such as neural networks.  
Predicting HIV resistance would be much easier if we could 
directly use the three-dimensional (3D) structure of the targeted 
protein sequences, but unfortunately we rarely have enough 
structural information available to train a neural network. Fur-
thermore, prediction of the 3D structure of a protein is not 
straightforward. However, characteristics related to the 3D 
structure can be used to train a machine learning algorithm as an 
alternative to take into account the information of the protein 
folding in the 3D space. Here, starting from this philosophy, we 
select the amino acid energies as features to predict HIV drug 
resistance, using a specific topology of a neural network. 
Results: In this paper, we demonstrate that the amino acid ener-
gies are good features to represent the HIV genotype. In addi-
tion, it was shown that Bidirectional Recurrent Neural Networks 
can be used as an efficient classification method for this prob-
lem. The prediction performance that was obtained was greater 
than or at least comparable to results obtained previously. The 
accuracies vary between 81.3% and 94.7%.  
Contact: E-mail: isisb@uclv.edu.cu  
Supplementary information: 
http://bioinformatics.psb.ugent.be/ 

1 INTRODUCTION 
The Human Immunodeficiency Virus (HIV) is one of the main 
causes of death in the world. The HIV is a human pathogen that 
infects certain types of lymphocytes called T-helper cells, which 
are important to the immune system. Without a sufficient num-
ber of T-helper cells, the immune system is unable to defend the 
body against infections.   

Combining several inhibitors of viral enzymes is, so far, the 
most efficient therapy against the virus because it can lead to 
prolonged virus suppression and sometimes immunological 
reconstruction. However, if such therapy cannot stop the viral 
replication completely, due to its high mutation rate, chances are 
high that the HIV changes its structure and develops a new vari-
ant, resistant to the drugs. At this stage, higher levels of the 
same antiretroviral drug are needed to inhibit viral replication, 
but these levels may be harmful to human beings. Therefore, 

once the virus becomes resistant to a given therapy, often the 
patient needs a different combination of drugs.   

It is a great challenge for scientists to design an effective drug 
against HIV. Nevertheless, some approved antiretroviral drugs 
are currently available for the treatment of HIV infection. Most 
of them focus on two of the most important viral enzymes, 
namely Protease and Reverse transcriptase. 

Drug resistance can be measured using two biological tests: 
phenotyping and genotyping. The first one quantifies drug sus-
ceptibility while the second one determines the mutational pat-
tern. Phenotyping tests need to know whether a mutation of the 
virus might be resistant to a given drug, but this type of test is 
very expensive and its application to each of the, constantly 
emerging, mutations becomes practically impossible. Therefore, 
the development of computational methods to predict the resis-
tance from a given genotype is the only alternative. 

Several statistical techniques and machine learning algorithms 
have been used to predict HIV resistance in silico, such as clus-
ter analysis and linear discriminant analysis, as described by 
Sevin (Sevin, A. D. et al. 2000). A simple metric to predict the 
Protease inhibitors resistance has been proposed by Scmidt et al. 
(2000). Wang and Larder (2003) used neural networks to predict 
resistance to the Protease inhibitor Lopinavir. Beerenwinkel et 
al. (2002) used decision trees while James (2004) used decision 
trees and the k-nearest neighbor technique (KNN) to predict the 
resistance of protease inhibitors. Recently, convex optimization 
techniques have been used together with Least Absolute Shrink-
age, and Selection Operator (LASSO) and Support Vector Ma-
chine (SVM) models (Rabinowitz, M. et al. 2006) for regression 
or classification of the protease and reverse transcriptase resis-
tance (see review by Cao et al. (2005) for details).   

In this paper, we will focus on the study of seven Protease in-
hibitors. The contact energy of the amino acids will be used to 
describe the sequences, and bidirectional recurrent neuronal 
networks are suggested for the analysis of sequences and resis-
tance. The performance will be compared to that of other ma-
chine learning methods.  

2 METHODS 

2.1 Datasets 
There are several databases with available information about 
HIV protease and its resistance associated with drugs. We used 
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the Stanford HIV Resistance Database Protease 
(http://hivdb.stanford.edu/cgi-bin/PIResiNote.cgi) to develop 
our strategy because it is the one mostly used in the literature. 
This database contains information about the genotype and phe-
notype for seven of the mostly used protease inhibitors: am-
prenavir (APV), atazanavir (ATV), nelfinavir (NFV), ritonavir 
(RTV), saquinavir (SQV), lopinavir (LPV) and indinavir (IDV). 
The genotype is documented for the mutated positions and con-
sequent changed amino acids. The phenotype is represented by 
the resistance-fold based on the concentration of the drug to 
inhibit the viral protease.  

Cases with unknown changes were discarded in order to 
eliminate missing values in learning, and seven databases were 
constructed, one for each drug. We took as reference sequence 
(wild type) the HXB2 protease and built the mutants by chang-
ing the amino acid in the corresponding reported mutated posi-
tions. For the resistance-fold we used the cut-off value of 3.5 as 
previously reported in the literature for these drugs 
(Beerenwinkel, N. et al. 2003; James, R. 2004).  If the drug re-
sistance is greater than the cut-off, the mutant is classified as 
resistant and otherwise as susceptible. 

2.2 Feature Representation 
One of the most important steps to apply a classification method 
is to find good features to represent the input information. In 
some approaches the simple representation of each sequence 
position by a binary vector of 20 elements (i.e. the amino acids) 
has been used. In that case a value of 1 is given to the analyzed 
amino acid position and a 0 to all the others. Mutual information 
profiles have also been used to represent each sequence of the 
Protease enzyme (Beerenwinkel, N. et al. 2002). 

Some methods using information of protein structure have 
also been reported in the literature (for more details see Cao et 
al. 2005). Despite the importance of the 3D structure, we do not 
have enough cases with this information in order to train a neu-
ral network. Since the amount of primary structure data is sig-
nificantly higher than the number of 3D structures available, we 
used data based on primary structures. We used features close to 
the 3D-structure to represent the primary sequence. In particular 
we chose the amino acid contact energy as an adequate represen-
tation because it determines the (un)folding of the protein. Mi-
yazawa and Jernigan (1994) showed that the contact energy 
changes the protein structure  and that the substitution of a sim-
ple amino acid is enough to observe this (Miyazawa and 
Jernigan 1996). For this reason the energy is used to represent 
the amino acids of the Protease sequence. 

We analyze two feature representations: 
 

(1) The energy associated with each amino acid, which we 
will refer to as Energy.  

Energy: A  R 

where A is the set of 20 amino acids and R is the set of 
real numbers 

(2) The variation of the energy with regard to the wild type, 
i.e. the energy difference between the positions in the 
analyzed sequence and the corresponding position in the 

wild type, or vice versa. This variation is called ∆En-
ergy.  

∆Energy(Ai)= Energy(AWi)-Energy(Ai)   

where AWi is the amino acid in the position i of the wild 
type sequence, and Ai is the amino acid in the position i 
of the mutated sequence.    

2.3 Problem formulation   
The problem was transformed into seven similar classification 
problems of two classes.  
For each problem the target function is defined as: 

   
F: C  O,  
O = {resistant, susceptible} 

  
where C ⊆ R99 , because the database consists of sequences of 
the same length, namely 99 amino acids. Each element of C is a 
protease sequence identified by an amino acid vector. All amino 
acids are represented by their Energy or ∆Energy which is, in 
both cases, a real value.  

Finally, after having designed the classification task we pro-
ceed to choose an appropriate classification method. 

2.4 Classification methods   
We used several classification methods such as Support Vector 
Machines (SVM), MultiLayer Perceptrons (MLP) and Bidirec-
tional Recurrent Neural Networks (BRNN).    

2.4.1. SVM 
The SVM is a technique developed by Vapnik in 1996 from 
statistical learning theory. SVMs have become an important 
machine learning technique for many pattern recognition prob-
lems, especially in computational biology. For SVM training 
and testing we used the LIBSVM software library developed by 
Chang and available at http://www.csie.ntu.edu.tw/cjlin/libsvm. 

2.4.2. MLP 
The Multilayer Perceptron (MLP) (Rumelhart, D. E. et al. 1986) 
is a type of artificial neural network that simulates one of the 
countless functions of our nervous system: classification. Con-
sequently, it structurally and functionally simulates part of the 
nervous system. This was one of the reasons for choosing a 
MLP to solve this problem. We used the standard Backpropaga-
tion algorithm with heuristics, described by Bonet et al. (2002) 
(Bonet, I. et al. 2002), in order to achieve a higher efficiency, 
accelerating its convergence speed.   

2.4.3. BRNR   
Keeping in mind that the attraction energies influence the final 
amino acid positions in the 3D space, it is important to analyze 
the sequence based on this characteristic. There are two ways to 
analyze the sequences. The first one is to consider the sequence 
as a whole, that is, to find general features to describe the whole 
sequence, as we do in the methods described above. The second 
one subdivides the sequence and analyzes each part of it, taking 
into account the influence of one part on the rest. In this case, 
we need to analyze the sequence in such a way that each amino 
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acid receives information about all other amino acids to the right 
and those to the left. For this reason it is necessary to use a non-
causal network (Baldi et al. 2000).   

Another factor that is important for the selection of the learn-
ing method is that we are working with mutated sequences. A 
sequence can mutate in three ways: a simple change of amino 
acid (i.e. one amino acid is replaced by another one), an inser-
tion, or a deletion of an amino acid. In the first case, the length 
of the sequence does not change, but in the other two cases it 
does. To solve this problem we need a method that allows a 
dynamic input.   

Recurrent neural networks were originally created to analyze 
time series in which the present moment is influenced by the 
past and the future (Tsoi and Back 1997). We used them here to 
analyze one-dimensional spatial sequences but the idea is essen-
tially similar. For the reasons discussed above we decided to use 
a neural network topology where the sequence is analyzed in 
three parts with identical length (the most simple topology in the 
BRNR), so that the processing of the middle part is influenced 
by the first and third part. Simultaneously, these extreme parts 
are influenced by the middle. In this way the training of the 
network represents the nature of the problem a little better. 

There are several topologies for recurrent networks that have 
been used in the literature to solve different problems. A bidirec-
tional dynamic topology is described and used for prediction of 
secondary structures by Baldi (Baldi and Soren 2001; Baldi 
2002). We based our work on a similar topology of bidirectional 
dynamic networks, as another learning method to solve the prob-
lem.   

Figure 1 shows an example of this topology for our problem. 
The network has 33 input neurons and 2 output neurons. It has 
context layers backward (HB), forward (HF) and the hidden 
layer (HO). In other words, this topology consists of two context 
blocks, one of them with recurrence to the left and another one 
with recurrence to the right. For each sequence we refer to s as 
the middle part, while we refer to left as the information re-
ceived from layer HB (subsequence  “s-1”) and right as the in-
formation received from layer HF (subsequence  “s+1”). But it 
should be noted that s is also considered the “right part” of the 
sequence s-1 and the “left part” of sequence s+1. 

To HB and HF we developed several tests always assigning 
the same weight to the pattern from the previous subsequence 
and to the pattern from the posterior subsequence, according to 
the given drug. Table 1 shows the numbers of neurons of the 
topology with which we obtained the best results. In this case 
the 33 inputs are real values and the outputs are (0,1) or (1,0), 
meaning resistant and susceptible, respectively. 

A classification problem is not the typical problem to solve in 
this kind of network. We do not have an output associated with 
each subsequence. But we considered the three parts of a se-
quence associated with the same output. Specifically the se-
quence was divided in three parts, that is, 33 inputs in each part 
and three outputs- one output for each part.  

As training algorithm of this network, the Backpropagation 
Through Time (BPTT) was used (Werbos, P. J. 1990). As target 
function we used Cross-Entropy and as output activation func-
tion we used a Softmax function.   

   
 

 

 

 

 

 

Fig 1. Bidirectional Recurrent Neuronal Network Topology. Each of the 
arrows from layer to layer means that there are connections of all the 
neurons of the origin layer with all the neurons of the destination layer. 
The discontinuous arrows represent the connections between the parts, 
the shift operator q+1 means that the connection is from a left immediate 
part, and the shift operator q-1 means that the connection comes from 
the right immediate part. 

2.5 Performance measures 
There are several measures to evaluate the prediction perform-
ance. Most of the results previously reported in the literature are 
evaluated with the standard accuracy measure, defined as 

      FNFPTNTP
TNTPAccuracy

+++
+

=
                            (1) 

where TP, TN, FP and FN are the number of true positive, true 
negative, false positives and false negatives, respectively. For 
this reason we used this measure in order to evaluate our results. 

We also used the measure performance of Sensitivity (Se) and 
Specificity (Sp) defined as 

 

FNTP
TPSe
+

=
                                          (2) 
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Table 1. Number of neurons associated to the context layers backward 
(HB), forward (HF) and to the hidden layer (HO) for each neuronal 
network 

Drug HB=HF HO 

SQV 11 11 

LPV 11 11 

RTV 20 20 

APV 20 20 

IDV 27 20 

ATV 32 32 

NFV 20 20 
To evaluate the results, k-fold cross-validation was applied to 

the dataset. This method is based on dividing the data in k ran-
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… 
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dom subsets and to use one of the k subsets as the test set and to 
combine the other k-1 subsets to form a training set. This is 
repeated k times. Then the average error across all k trials is 
computed. 

3 RESULTS 
As explained above, we used three different methods (SVM, 
MLP and BRNN) to predict resistance of HIV sequences using 
seven inhibitors. We compared the results with those published 
previously (Beerenwinkel, N. et al. 2002; James, R. 2004). All 
results were averaged using 10-fold cross-validation. 

We used MLP to compare with the results obtained up to now 
to demonstrate that the Energy as well as ∆Energy are adequate 
feature representations for the resistance prediction.  

Table 2 shows that the results of MLP with Energy are quite 
similar to those of the ∆Energy. Both are similar to the previous 
results.  

Table 2. Prediction performance of methods used before: KNN, several 
decision trees and the prediction performance using MLP. Prediction 
performance is measured in terms of accuracy.  

 1 2 3 4 5 6 

Drug KNN Dtree 

New  

DTree Dtree* 

MLP 

Energy 

MLP 

∆Energy 

SQV 81.7 80 85.7 87.5 85.47 87.88 

LPV 81.1   89.5   92.33 87.88 

RTV 82 89 89.5 89.8 90.92 90.71 

APV 80.9 75.8 75.8 87.4 82.17 80.65 

IDV 80.6 85 85.5 89.1 86.96 92.55 

ATV        80.00 74.16 

NFV 73.6 91.8 93.7 88.5 86.63 87.13 

The columns 1, 2 and 3 correspond to the results reported by James (2004) using 
KNN, the classic decision tree using ID3 and a variant of a decision tree developed 
respectively. The column 4 represents the results obtained by Beerenwinkel et al. 
(2002) using a classic decision tree. *Note the results of classical decision trees by 
James are different than those of Beerenwinkel due to a different number of cases; 
Beerenwinkel et al. used more cases to decision tree training. The columns 5 and 6 
show our results using a MLP. 

The other technique used was SVM with both Energy and 
∆Energy. Table 3 shows the results obtained with the variant of 
Energy for linear SVM, using linear kernel, polynomial of de-
gree 1 (other variant of linear), degree 2, degree 3, and radial 
basis.  

For the representation using ∆Energy these variants of SVM 
gave similar results. 

 

Table 3. Classification performance of SVM variants using Energy. 

polynomial 

Drug linear degree 1 

 

degree 2 degree 3 

Radial 

Basis 

SQV 87.82 80.82 69.68 85.23 82.38 

LPV 88.57 85.14 85.14 88.57 85.14 

RTV 91.83 84.96 79.08 92.15 86.92 

APV 82.30 77.47 77.47 83.64 78.82 

IDV 91.51 86.73 83.81 92.57 88.59 

ATV 74.38 71.07 68.59 72.72 70.24 

NFV 84.86 75.68 70.96 84.86 80.14 
 
After analyzing these results we can see that the feature repre-

sentation using Energy as well as the representation using ∆En-
ergy are appropriate to describe the sequence in this task.   

As explained earlier, we used BRNN to solve the problem. 
The network has three output values during the predicting proc-
ess, that is, the output is a vector with three components, be-
cause an output is obtained for each part. As in the other tech-
niques used, we represent the output with the two values ex-
plained before - resistance and susceptible-. The difference with 
regard to the other methods is that, now we will have three out-
puts in the prediction.  

The BPTT algorithm is based on the unfolding and folding 
process. For each case in the training dataset, in the forward 
process the network is unfolding as a classical feedforward net-
work and executes the Backpropagation algorithm to obtain the 
corresponding output as is shown in Figure 2. In the backward 
process the network is folding again to turn back as the begin-
ning (Fig. 1) in order to update the weights (Werbos 1990).  

As is illustrated in Figure 2, we split the instances in the data-
base. Figure 2 shows the first step to the BPTT and the process-
ing of the outputs in order to use this network in this classifica-
tion problem. The prediction is divided in three tasks. The first 
task is to split the sequence in three parts, representing the three 
entries to parts the network. The second task is to unfold the 
network and to obtain the three outputs for this input, and the 
third task is to compute the final output - to represent the resis-
tance or not of this protein - as an adequate combination of the 
three previous outputs. 

In our training dataset we represented the class in the three 
outputs (output 1, output 2, output3) using the same value, that 
means, 1 for resistance and 0 for susceptible. But in the predic-
tion we can obtain different outputs for each part, i.e. the output 
is a vector of three coordinates: (O1, O2, O3), where Oi є {0, 1}  
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Fig 2. Bidirectional Recurrent Neuronal Network Unfolding 
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Table 4. Classification performance using bidirectional recurrent neural 
networks.   

Drug 

BRR 

(mode) 

BRNN 

(middle output) 

SQV 91.16 91.16 

LPV 94.42 94.39 

RTV 93.42 94.73 

APV 89.25 88.71 

IDV 92.55 92.55 

ATV 82.67 81.33 

NFV 94.06 93.07 
 
Now the problem is the following: once the network has fin-

ished its prediction and we have its vectorial output, we need to 
select one of its components as the sole final output. Several 
variants can be designed to obtain one output from the three 
outputs. In this paper we will deal with two of them as is shown 
in the Figure 2. A first output variant is the mode of the three 
outputs and a second variant is the output corresponding to the 
middle time (output from time t=2). In the case of the first vari-
ant we are obtaining the value that is more frequent at the three 
parts and that gives the same weight to all parts of the sequence. 
In the second case it is valid to remember that this middle output 
was influenced by the other two parts. For this reason it pre-
sumably has more information about the whole sequence than 
the other ones.  

For this method we took as feature values the ∆Energy. The 
results are shown in Table 4. Similar results were obtained using 
the selection variant of the mode of the three outputs as well as 
the variant using the output of the middle time. 

We also used statistical methods to analyze the results. A 
Friedman two-way ANOVA test was used to compare the re-
sults of Table 2 in order to validate the accuracy of the MLP. 
This test showed that there are significant differences between 
the methods. The Friedman test demonstrated that methods 3 
and 5 (as referred in Table 2) are better than the rest. A Wil-
coxon test ratified that these two algorithms (3 and 5) are simi-
lar. 

A Friedman two-way ANOVA test was also used to compare 
the different SVM used in this work (shown in Table 3) and a 
Wilcoxon test was applied to compare with the results obtained 
by other authors (reported in Table 2). With these tests we do 
not obtain significant differences between the results of these 
algorithms. 

We proceeded in the same way with the RNN. We compared 
the results of this method with the best result in previous works, 
and with the best result using MLP.  The statistical tests yielded 
significant differences between the accuracy of these techniques. 

We used these statistics also to compare the two different 
kinds of final output processing (mode and middle output).  In 
this case we demonstrated that the results of both BRNN are an 
appropriated method to the problem, because the accuracy is 
greater than or similar to the rest. 
 

Table 5. Sensitivity and Specificity of the MLP and a BRNN variant.     

MLP BRNN (middle output)  

Drug sensitivity specificity sensitivity specificity 

SQV 84.70 90.57 90.48 92.59 

LPV 84.70 90.57 96.25 77.78 

RTV 88.41 94.52 89.74 100 

APV 80.95 80.39 84.81 87.85 

IDV 95.72 89.36 95.35 90.2 

ATV 78.53 73.33 87.5 80 

NFV 89.37 79.31 94.44 89.66 
 
In addition we compared, in the same way, the specificity and 

sensitivity of all methods used. In this case the results were dif-
ferent for the different drugs. In general the results of BRNN are 
good but we do not obtain better results regarding the specificity 
of APV and LPV with regard to KNN used by James (2004). 

The results of these tests can be found as supplementary in-
formation. 

4 CONCLUSIONS 
In this paper we analyzed a recurrent neural network with an 
appropriate topology to analyze sequences in classification prob-
lems. In particular, we studied the problem to predict the Human 
Immunodeficiency Virus Drug Resistance. Amino acid energies 
of the Protease were used as features to represent the sequence 
with characteristics related to their 3D structure. A comparative 
evaluation of a selection of machine learning algorithms was 
performed, demonstrating the reliability of both the use of en-
ergy as features and the use of recurrent neural network as pre-
dictors. 

It was demonstrated that both Energy (amino acids contact 
energy) and ∆Energy (difference of the amino acid energy in a 
mutant sequence with respect to wild type) are good features to 
represent the HIV genotype, and the results obtained were simi-
lar and in some cases better than other features used so far. It 
was demonstrated that the BRNN could be used as a classifica-
tion method for this problem. Prediction performance obtained 
was greater than or at least comparable with results obtained 
previously. The accuracy was between 81.4% and 94.7%. The 
two variants of networks output computation were averaged 
using 10-fold cross-validation and had similar results, conclud-
ing that both can be used in this problem. For the output selec-
tion variant, values of specificity and sensitivity were obtained 
between 74.1-100% and 77.5-95.8% respectively. In the selec-
tion variant using the mode the results of sensitivity and speci-
ficity were 84.8-96.2% and 77.7-100% respectively. 
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