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Abstract  
Non-stochastic and stochastic 2D linear indices have been generalized to codify chemical 
structure information for chiral drugs, making use of a trigonometric 3D-chirality correction 
factor. These descriptors circumvent the inability of conventional 2D non-stochastic linear 
indices to distinguish σ-stereoisomers. In order to test the potential of this novel approach in 
drug design we have modelled the angiotensin-converting enzyme inhibitory activity of 
perindoprilate’s σ-stereoisomers combinatorial library. Two linear discriminant analysis models, 
using non-stochastic and stochastic linear indices, were obtained. The models shown an accuracy 
of 100% and 96.65% for the training set; and 88.88% and 100% in the external test set, 
respectively. Canonical regression analysis corroborated the statistical quality of these models 
(Rcan of 0.78 and of 0.77) and was also used to compute biology activity canonical scores for 
each compound. After that, the prediction of the σ-receptor antagonists of chiral 3-(3-
hydroxyphenyl)piperidines by linear multiple regression analysis was carried out. Two 
statistically significant QSAR models were obtained when non-stochastic (R2 = 0.982 and s = 
0.157) and stochastic (R2 = 0.941 and s = 0.267) 3D-chiral linear indices were used. The 
predictive power was assessed by the leave-one-out cross-validation experiment, yielding values 
of q2 = 0.982 (scv = 0.186) and q2 = 0.90 (scv = 0.319), respectively. Finally, the prediction of the 
corticosteroid-binding globulin binding affinity of steroids set was performed. The best results 
obtained in the cross-validation procedure with non-stochastic (q2 = 0.904) and stochastic (q2 = 
0.88) 3D-chiral linear indices are rather similar to most of the 3D-QSAR approaches reported so 
far. The validation of this method was achieved by comparison with previous reports applied to 
the same data set. The non-stochastic and stochastic 3D-chiral linear indices provide a powerful 
alternative to 3D-QSAR. 
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Introduction 

Asymmetry of atomic configurations is very important feature in determining the physical, 

chemical and biological properties of chemicals substances [1]. The non-superimposable mirror 

image isomers are called enantiomers, but may also be referred to as enantiomorphs, optical 

isomers or optical antipodes [2].  The molecules with identical 2D structural formulas containing 

more than one asymmetric atom as referred to as σ-diastereomers [3]. Most of the physical as 

well as chemical properties of chiral molecules are similar. At the same time, it is well know that 

many biological molecules are chiral and that the chirality plays an essential role in defining 

biological activity [1]. The case of thalidomide is an example of a problem that was, at least, 

complicated by the ignorance of stereochemical effects [4]. Thus, whenever a drug is to be 

obtained in a variety of chemically equivalent forms (such as a racemate); it is both good science 

and good sense to explore the potential for in vivo differences between these forms. In this 

connection, the regulation of Food & Drug Administration (FDA) requires a detailed study of 

both enantiomers [5]. 

Several quantitative measures of chirality have been developed in the past and were extensively 

reviewed [6-8]. Buda and Mislow distinguished between two classes of measures [6]. In the first 

class ‘the degree of chirality expresses the extent to which a chiral object differs from an achiral 

reference object’. In the second one ‘it expresses the extent to which two enantiomorphs differ 

from one another’. These methods yield a single real value, usually an absolute quantity that is 

the same for both enantiomorphs. A different idea was to incorporate R/S labels into 

conventional topological indices (TIs) [9]. Derived chirality descriptors were correlated with 

biological activity by Julián-Ortiz et al. [10], Golbraikh et al. [1] and more recently by González-

Díaz et al. [11]. These indices are refereed as chirality TIs (CTIs). The main purpose on 

developing these descriptors is to be able to account for chiral molecules, which are well known 

to play an import role in medicinal chemistry. Very few of these descriptors have been reported 

in the literature to date, although the necessity of a more serious effort in this direction has been 

recognized by researchers in the area [12]. 

Recently, a novel scheme to the rational –in silico- molecular design and to QSAR/QSPR has 

been introduced by one of the present authors TOMOCOMD (acronym of TOpological 

MOlecular COMputer Design). It calculates several new families of molecular descriptors. In 

this sense, quadratic and linear indices have been defined in analogy to the quadratic and linear 
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mathematical maps [13,14]. This approach has been successfully employed in QSPR [13,15-17] 

and QSAR [14,18-22] studies, including studies related to nucleic acid-drug interactions [23,24], 

and central chirality codification [25]. Finally, an alternative formulation of our approach for 

structural characterization of proteins was carried out recently [26,27]. 

The main aim of the present paper is to extend 2D linear indices of the “molecular pseudograph’s 

atom adjacency matrix” in order to codify chirality related structural features. The problem of 

classification of ACE (Angiotesin-Converting Enzime) inhibitors, the prediction of σ-receptor 

antagonist activities and corticosteroid-binding globulin binding affinity of the Cramer’s steroid 

data set are selected as illustrative example of method applications. These examples will be used 

as matter of comparison with other CTIs, 3D and quantum chemical descriptors as well.  

 

Theoretical framework 

 

 2D non-Stochastic and Stochastic linear indices 

The atom, atom-type and total 2D non-stochastic and stochastic linear indices of the “molecular 

pseudograph`s atom adjacency matrix” for small-to-medium sized organic compounds have been 

explained in some detail elsewhere [13,14,20]. However, an overview of this approach will be 

given.  

For a given molecule composed of n atoms, the “molecular vector” (X) is constructed and the kth 

atom linear indices, fk(xi), are calculated as a linear maps on ℜ n [fk(xi): ℜ n→ ℜ n; thus fk(xi): 

Endomorphism on ℜ n ] in canonical basis as shown in Eq. 1, 

∑
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ik Xaxf
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)(                                                                                               (1)                                  

where, kaij = kaji (symmetric square matrix), n is the number of atoms of the molecule, and 

X1,…,Xn are the coordinates or components of the “molecular vector” (X) in a system of 

canonical basis vectors of ℜ n. The components of the “molecular” vector are numeric values, 

which can be considered as weights (atom-labels) for the vertices of the pseudograph. Certain 

atomic properties (electronegativity, density, atomic radius, etc) can be used with this propose. In 

this work Pauling electronegativity was selected as atom weights [28].  

The coefficients kaij are the elements of the kth power of the symmetric square matrix M(G) of the 

molecular pseudograph (G) and are defined as follows: [14,16,20,22]  



                                           4

aij  = Pij if i ≠ j and ∃ ek ∈ E(G)                                                                                                                                   (2)                                                         

     = Lii if i = j 

     = 0 otherwise 

where, E(G) represents the set of edges of G. Pij is the number of edges (bonds) between vertices 

(atoms) vi  and  vj and Lii is the number of loops in vi.  

Note that linear indices’s matrices, Mk, are graph–theoretic electronic–structure models; like an 

“extended Hückel MO model”. The M1 matrix considers all valence-bond electrons (σ - and π -

networks) in one step and their power (k = 0, 1, 2, 3…) can be considering as an interacting–

electron chemical–network model in k step. This model can be seen as an intermediate between 

the quantitative quantum-mechanical Schrödinger equation and classical chemical bonding ideas 

[10].  

The present approach is based on a simple model for the intramolecular movement of all outer-

shell electrons. Let us consider a hypothetical situation in which a set of atoms is free in space at 

an arbitrary initial time (t0). In this time, the electrons are distributed around atom nucleus. 

Alternatively, these electrons can be distributed around cores in discrete intervals of time tk. In 

this sense, the electron in an arbitrary atom i can move to other atoms at different discrete time 

periods tk (k = 0, 1, 2, 3,…) throughout the chemical-bonding network. 

The kth stochastic molecular pseudograph´s atom adjacency matrix [Sk(G)] can be obtained from 

Mk. Here, Sk(G) = Sk = [ksij], is a squared table of order n (n = number of atoms) and the elements 
ksij are defined as follows: 
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where, kaij are the elements of the kth power of M and the SUM of the ith row of Mk are named the 

k-order vertex degree of atom i, i
kδ . The kth sij elements are the transition probabilities with the 

electrons move from atom i to j in the discrete time periods tk. Note, that kth element sij take into 

consideration the molecular topology in k step throughout of the chemical-bonding (σ - and π -) 

network. 

Table 1 depict the calculation of the linear indices of the molecular pseudograph’s atom 

adjacency matrix for 2-chloro-propionaldehyde. 

 



                                           5

Table 1. Definition and calculation of non-stochastic and stochastic total (whole-molecule) and 
local (atom) 3D-chiral and simple 2D-linear indices of the molecular pseudograph’s atom 
adjacency matrix of the molecule 2-chloro-propionaldehyde. 
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*X = [O1 C2, C3, C4, Cl5,] 
Chiral Molecular Vector: *X∈ℜ 5  
In the definition of the *X, as chiral molecular vector, the chemical 
symbol of the element is used to indicate the corresponding 
electronegativity value + 3D-chirality factor. That is: if we write O it 
means χ(O) (oxygen Pauling electronegativity) + sin((ωA+4∆)π/2). 
Therefore, if we use the canonical basis of ℜ 5, the coordinates of 
any vector *X coincide with the components of that chiral molecular 
vector. 
sin((ωA+4∆)π/2) is the trigonometric chirality correction factor and 
take different values in order to codify specific stereochemical 
information such as chirality. 3D-chiral descriptor reduces to simples 
(2D) linear indices ones for molecules without specific 3D 
characteristics. 

[*X]: Column vector of coordinates of *X in the canonical basis of R5 (a nx1 matrix) 
[*X] = [3.44, 2.55, 2.55, 2.55, 3.16] for chirality insensitive linear indices  
[*X] = [3.44, 2.55, 3.55, 2.55, 3.16] for R-stereoisomer  
[*X] = [3.44, 2.55, 1.55, 2.55, 3.16] for S-stereoisomer  
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3D-chiral linear indices of first order is a linear form; *f1(x): ℜ n→ ℜ n such that,  
 using non-stochastic linear indices: *f1(O1, C2, C3, C4, Cl5) = (2C2, 2O1+1C3, 1C2+1C4+1Cl5, 1C3, 1C3)  
 using stochastic linear indices: *f1(O1, C2, C3, C4, Cl5) = (C2, 0.67O1+0.33C3, 0.33C2+0.33C4+0.33Cl5, 1C3, 1C3 )

 3D (R)-stereoisomer ‘Classical’ 2D-indices 3D (S)-stereoisomer 
Local  and total non-stochastic chiral linear indices of order 0-2 (k = 0-2) Atom 

(i) *f0(xi) *f1(xi) *f2(xi) *f0(xi) *f1(xi) *f2(xi) *f0(xi) *f1(xi) *f2(xi) 
O1 3.440 5.100 20.860 3.440 5.100 18.860 3.440 5.100 16.860 
C2 2.550 10.430 18.460 2.550 9.430 18.460 2.550 8.430 18.460 

*C3 3.550 8.260 17.530 2.550 8.260 14.530 1.550 8.260 11.530 
C4 2.550 3.550 8.260 2.550 2.550 8.260 2.550 1.550 8.260 
Cl 5 3.160 3.550 8.260 3.160 2.550 8.260 3.160 1.550 8.260 

Total 15.250 30.890 73.370 14.250 27.890 68.370 13.250 24.890 63.370 
Local and total stochastic chiral linear indices of order 0-2 (k = 0-2) Atom 

(i) *f0(xi) *f1(xi) *f2(xi) *f0(xi) *f1(xi) *f2(xi) *f0(xi) *f1(xi) *f2(xi) 
O1 3.440 2.550 3.477 3.440 2.550 3.143 3.440 2.550 2.810 
C2 2.550 3.477 2.637 2.550 3.143 2.637 2.550 2.810 2.637 

*C3 3.550 2.753 3.506 2.550 2.753 2.906 1.550 2.753 2.306 
C4 2.550 3.550 2.753 2.550 2.550 2.753 2.550 1.550 2.753 
Cl 5 3.160 3.550 2.753 3.160 2.550 2.753 3.160 1.550 2.753 

Total 15.250 15.880 15.126 14.250 13.547 14.193 13.250 11.213 13.260 
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The kth total [and local (atom and atom-type) stochastic linear indices], sfk(x) [sfk(xi)] are 

calculated in the same way that the linear indices (non-stochastic), but using kth stochastic 

molecular pseudograph´s atom adjacency matrix, Sk(G), like mathematical linear maps’ matrices. 

On the other hand, the defining equation (1) for fk(xi) may be written as the single matrix 

equation: 

fk(xi) = [X’]k = Mk[X]                                                                                                      (4) 

where [X] is a column vector (a nx1 matrix) of the coordinates of X in the canonical basis of ℜ n 

and Mk the kth power of the matrix M of the molecular pseudograph (map’s matrix). 

Total (whole-molecule) linear indices are linear functional (some mathematicians use the term 

linear form, which means the same as linear functional) on ℜ n. That is, the kth total linear index 

is a linear map from ℜ n to the scalar ℜ [ fk (x): ℜ n→ ℜ ] The mathematical definition of these 

molecular descriptors is the following: 

)()(
1

i

n

i
kk xfxf ∑

=

=                                                                                                 (5)  

where n is the number of atoms and fk(xi) are the atom’s linear indices (linear maps) obtained by 

Eq. 1. Then, a linear form fk(x) can be written in matrix form, 

fk(x) = [u]t [X’]k                                                                                                               (6) 

or 

fk(x) = [u]t Mk[X]                                                                                                             (7) 

for each molecular vector X∈ℜ n. [u]t is a n-dimensional unitary row vector. As can be seen, the 

kth total linear index is calculated by summing the local (atom) linear indices of all atoms in the 

molecule. 

 

3D-Chiral linear indices. 

The total and local linear indices, as defined above, can not codify any information about 3D 

molecular structure. In order to solve this problem we introduced a trigonometric 3D-chirality 

correction factor in molecular vector X [25]. In these sense, a chirality molecular vector is 

obtained (*X), where the components of X (for instance, Pauling electronegativity (XA) [28] of 

the atom A) are substituted by the following term [χA + sin((ωA+4∆)π/2)].  

The trigonometric 3D-chirality correction factor use a dummy variable, ωA and an integer 

parameter, ∆: [25]. 



                                           7

ωA = 1 and ∆ is an odd number when A has R (rectus), E (entgegen), or a (axial)  

         notation according to Cahn-Ingold-Prelog rules                                                   (8) 

     = 0 and ∆ is an even number, if A does not have 3D specific enviroment 

     = -1 and ∆ is an odd number when A has S (sinister), Z (zusammen),  

        or e (ecuatorial) notation according to Cahn-Ingold-Prelog rules 

Thus, this 3D-chirality factor sin((ωA+4∆)π/2) takes different values in order to codify specific 

stereochemical information such as chirality, Z/E isomerism, and so on. This factor therefore 

takes values in the following order 1 > 0 > -1 for atoms that have specific 3D environments. The 

chemical idea here is not that the attraction of electrons by an atom depends on their chirality, 

due to experience shows that chirality does not change the electronegativities of atoms in the 

molecule in an isotropic environment in an observable way [29]. This correction has principally a 

mathematical means and must not be source of any misunderstanding. That is to say, this 

approach can be seen as a simplification of molecular structure. However, in other level of the 

theoretical chemistry this procedure has also been used. As was recalled by Dewar almost 20 

years ago, the Schrödinger equation is not exact; it is only an approximation where electron spin 

is incorporated in the results only as an artifact [30]. 

A severe limitation of the Golbraikh-Bonchev-Tropsha (GBT) approach is the existence of 

different chirality corrections and we had great difficulty in selecting one of these. In this sense, 

Gonzalez et al. [11] introduced an exponential chirality factor (exp (ωA∆)), which eliminated 

indetermination in the selection of chirality and 3D scales for stochastic topologic indices. 

Unfortunately, this exponential factor does not solve the problem in GBT-like approaches. In this 

connection, the present trigonometric 3D-chiral correction factor is invariant with respect to the 

selection of other chirality scales for all kinds of such chiral topologic indices (GBT-like ones). 

Table 2 depicts the values of the trigonometric 3D-Chirality correction factor for all allowed 

values of ωA and ∆ (GBT-like chirality scale and other alternative chirality scales). In Table 2 

clearly shown that the trigonometric 3D-chirality factor is invariant with respect to the selection 

of all possible real scales. That is to say, the factor gets ever the values 1, 0 and -1 for R, non-

chiral and S atoms. As outlined above the demonstration of invariance for this factor with respect 

to other 3D features such as a/e substitutions and Z/E or π-isomer is straightforward to realize by 

homology. Henceforth, we do not need to answer the question regarding the best value for 

chirality correction at lest for linear scales [1,10,11]. 
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Table 2. Values of trigonometric 3D-chirality correction factor [sin((ωa+4∆)π/2)] within the 
allowed domain. 

∆  
ωA -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 
ωR = 1 1  1  1  1  1  1  1  1 
ωnon-chiral =  0  0  0  0  0  0  0  0  
ωS = -1 -1  -1  -1  -1  -1  -1  -1  -1 
 
 
A very interesting point is that the present 3D-chiral descriptor reduces to simples (2D) linear 

indices ones for molecules without specific 3D characteristics because sin(0+4∆)π/2 = 0, being ∆ 

zero or any even number. That is, when all the atoms in the molecule are not chiral, the 

TOMOCOMD-CARDD (Computed-Aided ‘Rational’ Drug Design) molecular descriptors or any 

GBT-like chiral topologic index do not change upon the introduction of this factor. This means 

that *X = X and thus, *fk(x) = fk(x). 

 

Methods  

 

TOMOCOMD-CARDD approach 

For computation of 3D-chiral linear indices we used TOMOCOMD software [31]. It’s an 

interactive program for molecular design and bioinformatics research, which contains four 

subprograms: CARDD, CAMPS (Computed-Aided Modeling in Protein Science), CANAR 

(Computed-Aided Nucleic Acid Research), and CABPD (Computed-Aided Bio-Polymers 

Docking). In this paper, we used the module CARDD for the calculation of non-stochastic and 

stochastic total 3D-chiral linear indices considering and not considering H-atoms in the 

molecular pseudograph (G). 

 

Chemometric analysis 

Statistical analysis was carried out with the STATISTICA software [32]. The considered 

tolerance parameter (proportion of variance that is unique to the respective variable) was the 

default value for minimum acceptable tolerance, which is 0.01. Forward stepwise procedure was 

fixed as the strategy for variable selection. The principle of parsimony (Occam's razor) was taken 
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into account as strategy for model selection. In connection, we selected the model with a high 

statistical signification but having as few parameters (ak) as possible.  

Linear Discriminant Analysis (LDA) was performed to classify the 32 perindoprilate 

stereoisomers as angiotensin-converting enzyme (ACE) inhibitors or not. The quality of the 

models were determined by examining Wilks’ λ parameter (U-statistic), square Mahalanobis 

distance (D2), Fisher ratio (F) and the corresponding p-level (p(F)) as well as the percentage of 

good classification in the training and test sets. The statistical robustness and predictive power of 

the obtained model was assessed using an external prediction (test) set. In developing 

classification models the values of 1 and -1 were assigned to active and inactive compounds, 

respectively. By using the models, one compound can then be classified as active, if ∆P% > 0, 

being ∆P% = [P(Active) - P(Inactive)]x100 or as inactive otherwise. P(Active) and P(Inactive) 

are the probabilities with which the equations classify a compound as active and inactive, 

correspondingly.  

Finally, the calculation of percentages of global good classification (accuracy) and Matthews’s 

correlation coefficient (MCC) in the training and test sets permitted the assessment of the model 

[33]. MCC is always between -1 and +1. A value of -1 indicates total disagreement (all-false 

predictions) and +1 total agreement (perfect predictions). The MCC is 0 for completely random 

predictions and therefore, it yields easy comparison with respect to random baseline. That is to 

say, MCC quantifies the strength of the linear relation between the molecular descriptors and the 

classifications, [33] and it may often provide a much more balanced evaluation of the prediction 

than, for instance, the percentages. 

We also developed the linear discriminant canonical analysis by checking the following statistic: 

Canonical regression coefficient (Rcan), Chi-squared and its p-level [p(χ2)] [34]. 

On the other hand, Multiple Linear Regression (MLR) was carried out to predict σ-receptor 

antagonist activities of 3-(3-hydroxyphenyl)piperidines and the corticosteroid-binding globulin 

(CBG) binding affinity of a steroid data set. The quality of the models was determined 

examining the regression’s statistic parameters and of the cross-validation procedures [35,36]. In 

this sense, the quality of models was determined by examining the determination coefficients 

(also know as squared regression coefficient; R2), Fisher-ratio’s p-level [p(F)], standard 

deviations of the regression (s) and the leave-one-out (LOO) press statistics (q2, scv) [35,37]. 
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QSAR Applications and comparison with other theoretical studies 

 

To evaluate the effectiveness of 3D-chiral linear indices, we have tested their ability to predict 

pharmacological properties in groups with a known stereochemical influence. First a data set of 

32 perindoprilate stereoisomers, an angiotensin-converting enzyme (ACE) inhibitors, was used 

to test the applicability of the method [11,38]. ACE acts in plasma and blood vessels, removing 

the C-terminal dipeptide of undecapeptide Angiotesin I to produce the potent blood vessel 

constricting octapeptide Angiotesin II. In addition, ACE inactivates the hypotensive nonapeptide 

Bradykinin. For these reasons, ACE is the biological target of many important antihypertensive 

drugs called ACE inhibitors (ACEIs) [38]. Is this study active is taken to a mean a compound 

that has an IC50 value no higher than 110 nm. 

After that, a short data set of seven pairs of chiral N-alkylated 3-(3-hydroxyphenyl)piperidines that 

bind to σ-receptors, are also selected as illustrative example of the 3D-chiral linear indices 

application. The σ-receptors mediate severe side effects induced by various dopamine antagonists 

[10].  

Finally, in order to validate even more 3D-chiral linear indices in QSAR studies, we select a 

molecular set that is well-know to QSAR researchers, the so-called Cramer’s steroid data set. 

This data set was introduced by Cramer et al in 1988 [39] using Comparative Molecular Field 

Analysis (CoMFA) methodology and since then has become a benchmark for the assessment of 

novel QSAR methods [40,41]. Various groups used this data set to compare the quality of their 

3D-QSAR methodologies. Hence, this data set has become one of the most often discussed ones 

and can be seen as point of reference data set for novel molecular descriptors [42]. Even though 

this data set is not the ideal 3D benchmark data set, [42] it was used for the shake of 

comparability [43]. We use this molecular set, because all compounds in this data set contain 

chiral atoms, and binding affinities of these compounds are available [39]. Some structures of 

these compounds were drawn incorrectly in the original paper and were corrected in a recent 

work [41].   

Different methods were used to develop 3D-QSAR models for this data set, including CoMFA 

[39], Comparative Molecular Similarity Indices Analysis (CoMSIA) [44], Molecular Quantum 

Similarity Measures (MQSM) [45], Topological Quantum Similarity Indices (TQSI) [46], and 
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Comparative Molecular Moment Analysis (CoMMA) [41], Mapping Property Distributions of 

Molecular Surfaces (MAP) [43], and so on [47-50].  

 

Classification of the ACE inhibitory activity of 32 perindopirilate’s σ-stereoisomers   

We tested the predictive power of 3D-chiral linear indices in the classification of perindopirilate 

stereoisomers. The classification obtained models are given below together with the LDA 

statistical parameters: 

 

ACEiactv = 10.818 +2.85x10-5 *fH
11(x) -2.02x10-6 *f15(x)                                         (9)                                       

N = 23    λ = 0.398    D2 = 7.82    F(2, 20) = 15.080    p < 0.0001 

ACEiactv = 64.6484 +7.5052 *f6(x) -8.4588  *f14(x)                                                     (10)                      

N = 23     λ = 0.399    D2 = 7.789    F(2, 20) = 15.020     p < .0001                               

 

where N is the number of compounds, λ is the Wilks’ statistic, D2 is the squared Mahalanobis 

distance, F is the Fisher ratio and p-value is the significance level.  

The model (9), which includes non-stochastic indices, has an accuracy of 100% for the training 

set. This model showed a high Matthews’ correlation coefficient (MCC) of 1. The most 

important criterion for the acceptance or not of a discriminant model is based on the statistic for 

external prediction set. Model (9) classifies correctly 100.00% of active (isomers 1, 2 and 4) and 

83.33% of inactive (isomers 12, 16, 20, 24 and 28) compounds in the test set, for an accuracy of 

88.88% (MCC = 0.79). 

In Table 3 we give the basic structure of perindoprilate stereoisomer and their classification in 

the training and prediction set together with their canonical scores and their posterior 

probabilities calculated from the Mahalanobis distance. 

A very similar behavior was obtained with stochastic linear indices (Eq.10). In this case, the 

model classifies correctly 83.33% of active (isomers 3, 5, 6, 7 and 8) and 100% of inactive ones 

(compounds 10, 11, 13-15, 17-19, 21-23, 25-27, 29-31) for accuracy of 95.65% and a high MCC 

of 0.887 for the training set. In addition, model 10 shown an accuracy of 100%, yielding a MCC 

of 1 for the test set. 
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Table 3. Basic structure and chirality notation of active and non-active perindoprilate stereoisomers with 
their posterior probabilities in data split in training and test sets and the canonical scores, using non-
stochastic and stochastic linear indices. 

N

O

OH

O CH
CH3

H
N CH

O
OH

1
2

3
3a
7a

4
5

6
7 8 9

10
11

12
13

14

15
16

17

 
No   Comp.a Classb IC50

c Class ∆P%d Scoree  Class ∆P%d    Scoree 

 Eq. 9 (non-Stochastic) Eq. 10 (Stochastic) 
active compounds 
1 SSRSS* + 1.1 + 95.43 -2.00 + 76.96 1.79 
2 SRSSS* + 1.2 + 99.60 -2.92 + 97.03 2.60 
3 SSSSS + 1.5 + 98.45 -2.41 + 93.66 2.31 
4 SRRSS* + 3.3 + 98.81 -2.51 + 88.67 2.08 
5 SSSSR + 12.2 + 97.02 -2.16 + 94.07 2.34 
6 SSRSR + 29.4 + 91.34 -1.75 + 78.32 1.82 
7 SRRSR + 39.8 + 97.70 -2.26 + 89.39 2.11 
8 SRSSR + 54 + 99.22 -2.67 + 97.22 2.63 
9 RRSSS + 108 + 0.11 -0.59 - -48.90 0.63 

Non-active compounds 
10 SSSRS - 1.1x103 - -41.42 -0.26 - -88.42 -0.02 
11 RSSSS - 1.9x103 - -59.03 -0.09 - -72.69 0.34 
12 SSRRR* - 2.6x103 - -86.64 0.39 - -96.74 -0.51 
13 RRSSR - 5.5x103 - -31.80 -0.35 - -46.24 0.65 
14 SSRRS - 7.1x103 - -75.65 0.15 - -96.96 -0.54 
15 RRSRS - 7.8x103 - -99.35 1.55 - -99.86 -1.70 
16 RSRRR* - 23x103 - -99.97 2.72 - -99.98 -2.48 
17 SRRRR - 33x103 - -56.44 -0.12 - -93.06 -0.22 
18 RSSSR - 36x103 - -76.52 0.16 - -71.02 0.36 
19 RSRSR - 47x103 - -91.48 0.57 - -91.83 -0.16 
20 RSRSS* - 60x103 - -84.13 0.32 - -92.35 -0.18 
21 RRRRR - 105 - -99.89 2.21 - -99.96 -2.19 
22 SRRRS - 105 - -29.93 -0.36 - -93.51 -0.24 
23 RRRSS - 105 - -49.77 -0.19 - -84.11 0.11 
24 SRSRR* - 105 - -9.17 -0.53 - -75.00 0.30 
25 RRRRS - 105 - -99.78 1.96 - -99.97 -2.22 
26 RRSRR - 105 - -99.67 1.80 - -99.85 -1.67 
27 SSSRR - 105 - -64.76 -0.02 - -87.65 0.01 
28 RSSRS* - 105 - -99.83 2.06 - -99.94 -1.99 
29 RRRSR - 105 - -70.48 0.06 - -83.07 0.14 
30 RSSRR - 105 - -99.91 2.31 - -99.93 -1.97 
31 RSRRS - 105 - -99.94 2.47 - -99.98 -2.51 
32 SRSRS* - 105 + 23.42 -0.77 - -76.47 0.27 
*Compounds used in the Test set. aNotation of the chiral centres in each perindoprilate derivative in the following  
order C2, C3a, C7a, C9, C11. bClassification according to the value of the IC50. cValues of the  IC50, of the compound, 
for ACE in nM taken from the references 11, 25 and 38. d∆P Posterior probability predicted for each compound 
using Eq. 9 and Eq. 10. eCanonical scores predicted using canonical analysis.  
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Table 4 depicts the obtained results in our study as well as the achieved with other 

cheminformatic approaches. First, it is remarkable that our model contain one variable less than 

the model obtained with MARCH-INSIDE molecular descriptors [11] and the same number of 

variables that Marrero-Ponce et al. [25] used for develop their model using other 3D-chiral 

TOMOCOMD-CARDD descriptors. However, the accuracy of the model 9 for the training set is 

the best of all equations for this data set. In the model 10 this parameter, for the training and test 

set, are equal to the obtained when the 3D-chiral quadratic indices [25] were used and both are 

better than obtained for González-Díaz et al. (see Table 4). [11]  

On the other hand, canonical analysis is used here to test both the ability of 3D-chiral non-

stochastic and stochastic linear indices to discriminate between the two groups of stereoisomers 

and also to order these compounds accordingly with their stability profile. 

Canonical analysis is used here to test both the ability of 3D-chiral quadratic indices to 

discriminate between the two groups of stereoisomers and also to order these compounds 

accordingly with their stability profile. 3D-chiral total non-stochastic and stochastic linear 

indices & LDA ACEinhibitory activity canonical analysis principal root are given below: 

 

ACEroot = -4.643 -1.1x10-5 *fH
11(x) +7.54x10-7 *f15(x)                                                (11)                                      

N = 23  λ = 0.398   Rcan = 0.78   χ2 = 18.39   mean(+) =  -1.98   mean(-) = 0.70   p < 0.0001 

ACEroot = 25.27 +2.81*f6(x) -3.172*f14(x)                                                                  (12)  

N = 23  λ = 0.399   Rcan = 0.77   χ2 = 18.34   mean(+) = 1.97   mean(-) = -0.70   p < 0.0001 

 

The canonical transformation of the LDA results with non-stochastic and stochastic 3D-chiral 

linear indices gives rise to canonical roots with good canonical regression coefficients of 0.78 

and 0.77, respectively. Chi-squared test permits us to asses the statistical signification of this 

analysis as having a p-level <0.0001. 

When LDA analysis is applied to solve the two-group classification problem we ever find two 

classification functions. However, we cannot use these two classification functions to evaluate all 

the compounds and obtain a bivariate stability map because they are not orthogonal [34]. To 

solve this problem we used canonical analysis in this case the dimensional reduction caused by 

canonical analysis makes possible to obtain a 1-dimension stability map [34]. 
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Table 4. Classification of 32 perindopirilate’s stereoisomers and the statistical parameters of the 
QSAR models obtained using different molecular descriptors.  
index n λ D2 Accuracy 

(Training) 
Accuracy 

(Test) 
F 

Non-Stochastic Linear 
indices (Eq. 9) 2 0.398 7.82 100.00% 88.88% 15.08 

Stochastic Linear indices 
(Eq. 10) 2 0.399 7.789 95.65% 100.00% 15.02 

MARCH-INSIDE 
molecular descriptors[11] 3 0.38 8.43 91.30% 88.88% 10.30 

Non-Stochastic Quadratic 
indices[25] 2 0.42 7.12 95.65% 100.00% 13.73 
 N: number of used compounds. n: number of parameter in the obtained model.  
 

That is the same that we can order all compounds taking into account its canonical scores. The 

canonical scores of all stereoisomer of perindoprilate appear in Table 3. For example, we can 

detect an overall ascendant tendency of canonical scores of equation (11) when they are plotted 

in the same order in which IC50 increases (activity decreases). As it is expected, the over all 

mean of canonical root scores for the group of active isomers (lowest IC50 values) has an 

opposite sign (-) with respect to the other group [(+); highest IC50 values] [34].  

 

Modelling σ-receptor antagonist activities of 3-(3-hydroxyphenyl)piperidines 

We will now discuss the ability of 3D-chiral linear indices to predict σ receptor antagonist 

activities. 3D-linear indices are non-symmetric and reduce to classical descriptors when 

symmetry is not codified (see Table 1). Moreover, Gónzalez-Díaz et al. conclude that σ receptor 

antagonist activities are not a pseudoscalar property [11] and we can expect at least a good 

correlation with 3D-linear indices.  

This experiment also permitted us to compare our method with others previously reported 

approaches. The MLR analysis was used to develop QSAR models for the σ receptor antagonist 

activities. The obtained models using non-stochastic linear indices are the follow: 

 

logIC50(σ) = -8.9207(±0.8388) +0.5304(±0.0695)*f0(x) -0.0065(±0.0011)*fH
3(x)       (13)   

N = 14    R2 = 0.939    q2
LOO

 = 0.909    F(2, 11) = 84.876    s = 0.271    scv = 0.305   p< 0.0001 

logIC50(σ) = -9.4831(±0.4984) +0.5886(±0.0419)*f0(x) -0.0074(±0.0007)*fH
3(x)       (14) 

N = 13    R2 = 0.982    q2
LOO = 0.966    F(2, 10) = 265.66    s = 0.157    scv = 0.186   p<0.0001 
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where, N is the size of the data set, R2 is the squared regression coefficient (determination 

coefficient), s is the standard deviation of the regression, F is the Fischer ratio and q2 (scv) are the 

squared correlation coefficient (standard deviation) of the cross-validation performed by the 

LOO procedure. This statistics indicate that these models are appropriate for the description of 

chemicals studied here. In the Table 5 are show the structure and values of experimental and 

calculated Log IC50 for this data set. 

 
Table 5. Results of multivariate regression analysis of the log IC50 of a 
group of n-alkylated 3-(3-hidroxyphenyl)piperidines for the σ-receptor. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

aAlkylic (R) group at nitrogen ring. bObserved values of the Log IC50 for the σ-receptor 
taken from Ref. 10, 11 and 25. cValues calculated from Eq. 13. dResidual, defined as [Log  
IC50 (σ)Obs – Log IC50 (σ)Cal]. eValues calculated from Eq. 14. f Values calculated from 
Eq. 15. Abbreviations: HPP, N-alkylated 3-Hydroxyphenyl piperidines. 
 
In the development of the first quantitative model for description of activities (Eq.13), one 

compound was detected as statistical outlier. Once rejected the statistical outlier, the Eq. 14 was 

obtained with better statistical parameters.  

When the stochastic linear indices were used, the obtained model for the σ receptor antagonist 

activities is given below: 

logIC50(σ) = -5.9421(±0.5197) +0.8067(±0.2739)*fH
14(x) -0.7329(±0.2741)*fH

11(x)        (15) 

N = 14    R2 = 0. 941    q2
LOO

 = 0.90    F(2, 11) = 87.932    s = 0. 267    scv= 0.319    p<0.0001 

N
OHR

*
 

            Log IC50 (σ-receptor) Compound 
(Alkyl group)a Obs.b Cal.c Res.d Cal.e Res.d Cal.f Res.d 

(R)-3-HPP 
H -0.66 -0.54 -0.12 -0.54 -0.12 -0.48 -0.18 
CH3 0.43 0.13 0.30 0.18 0.25 0.28 0.15 
C2H5 0.95 0.72 0.23 0.81 0.14 0.70 0.25 
n-C3H7 1.52 1.32 0.20 1.45 0.07 1.45 0.07 
i-C3H7 0.61 1.30 -0.69 outlier - 0.84 -0.23 
n-C4H9 2.05 1.93 0.12 2.09 -0.04 1.89 0.16 
2-Phenylethyl 2.10 2.22 -0.12 2.24 -0.14 2.41 -0.31 
(S)-3-HPP 
H -1.19 -1.09 -0.10 -1.13 -0.06 -0.80 -0.39 
CH3 -0.28 -0.42 0.14 -0.42 0.14 -0.56 0.28 
C2H5 -0.01 0.17 -0.18 0.21 -0.22 0.19 -0.20 
n-C3H7 0.81 0.77 0.04 0.85 -0.04 0.57 0.24 
i-C3H7 0.68 0.75 -0.07 0.83 -0.15 0.62 0.06 
n-C4H9 1.51 1.37 0.14 1.49 0.02 1.18 0.33 
2-Phenylethyl 1.80 1.67 0.13 1.65 0.15 2.03 -0.23 
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The comparison with other methods previously reported for the same activity is shown in Table 

6. As it can be seen, our models have statistical parameter slightly better than models obtained 

with MARCH-INSIDE molecular descriptors [11] and other chiral TIs [10], and our statistics are 

very similar that obtained by Marrero-Ponce et al. [25] when 3D-chiral quadratic indices were 

used. Once rejected the statistical outlier our model show better predictive abilities (R2 = 0.982, s 

= 0.157, q2 = 0.966 and scv = 0.186) than model built with 3D-chiral quadratic indices (R2 = 0.977, 

s = 0.175, q2 = 0.957 and scv = 0.211) [25]. 

 

Table 6. Statistical parameters of the QSAR models obtained using different molecular 
descriptors to predict the σ-Receptor antagonist activity of 14 N-alkylated 3-Hydroxyphenyl 
piperidines 
index N n R2 s q2 sCV F 
Non-Stochastic Linear 
Indices (Eq. 13) 14 2 0.939 0.271 0.909 0.305 84.87 

Non-Stochastic Linear 
Indices (Eq. 14) 13 2 0.982 0.157 0.966 0.186 256.66 

Stochastic Linear 
Indices (Eq. 15) 14 2 0.941 0.267 0.90 0.319 87.93 

Chiral TIs10 14 3 0.931 0.301 * * 45.70 
MARCH-INSIDE 
molecular descriptors11 14 2 0.922 0.295 * 0.32 71.17 

Non-Stochastic 
Quadratic indices25 14 2 0.940 0.270 0.912 0.289 85.82 

Non-Stochastic 
Quadratic indices25 13 2 0.977 0.175 0.957 0.211 211.20 

*Values are not reported in the literature. 
 
 

Prediction of the Corticosteroid-Binding Globulin (CBG) binding affinity of a Steroid family.  

The training set used to validate our methodology is made up of 31 molecules. Table 7 gathers 

the entire studied set with the actual binding affinities, taken from Robert et al. [45]. Due to the 

studied steroid molecular structures have been already depicted in several papers, they will not 

be included here. For more details see, for example Figure 1 in reference 39 or Figure 1 in 

reference 41. 

This study also permitted us to compare our method with others 3D QSAR methods such as 

MQMS, MaP, CoMMA, TQSAR and so on. The MLR analysis was used to develop QSAR 

models for the corticosteroid-binding globulin binding affinity. The obtained models using non-

stochastic linear indices are the follow: 
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Table 7. Results of the steroids data set used for QSAR study.  

aObserved CBG affinity values taken from ref 45; bPredicted CBG affinity values using Eq.16; bPredicted CBG affinity 
values using Eq.18; cPercent of relative error; %E = 100x[Obs-Pred/Obs]. dPercent of relative error in leave-one-out 
cross-validation procedure; %Ecv = 100x[Obs-PredLOO-CV/Obs]. eCompounds detected as outlier in Eq. 16. fCompounds 
detected as outlier in Eq. 18. 

 

CBG = -6.396(±0.087) -7.596(±0.999)*fL14(xE) -4.528(±1.816)*f4(x) -6.696(±2.399)*f2(x) 

+16.289(±2.908)*fL11(xE) -9.603(±2.380)*fL7(xE) -2.269(±0.662)*f0(x)                   (16)                                

N = 31    R2 = 0.84    q2
LOO

 = 0.77    F(6, 24) = 21.060    s = 0.48    scv=  0.52   p<0.0001 

 

CBG = -6.511(±0.057) -2.297(±0.423)*f0(x) -8.329(±1.512)*f2(x) -5.782(±1.143)*f4(x)            -

12.424(±1.527)*fL7(xE) +19.908(±1.877)*fL11(xE) -8.790(±0.651)*fL14(xE)            (17)                                 

N = 28    R2 = 0.946    q2
LOO = 0.904    F(6, 21) = 61.765    s = 0.296    scv=  0.349   p<0.0001 

  Observed CBG 
affinity (pKa)a

Pred. 
valueb 

% Ec %Ecv
d Pred. 

valueb 
% Ec %Ecv

d 

1 Aldosterone -6.279 -6.149 2.063 2.396 -6.222 0.902 2.497 
2 Androstanediol -5.000 -5.161 -3.225 -5.187 -4.984 0.324 0.394 
3 Androstenediol -5.000 -4.965 0.692 0.875 -4.930 1.401 1.721 
4 Androstenedionee,f -5.763 -6.691 -16.096 -20.067 -6.583 -14.231 -17.342 
5 Androsterone -5.613 -5.265 6.197 7.865 -5.342 4.826 6.399 
6 Corticosterone -7.881 -7.283 7.588 8.857 -7.535 4.389 5.397 
7 Cortisol -7.881 -7.380 6.351 7.955 -7.794 1.100 1.475 
8 Cortisone -6.892 -6.892 0.004 0.006 -7.222 -4.793 -6.438 
9 Dehydroepiandrosterone -5.000 -5.094 -1.879 -2.296 -5.033 -0.652 -0.750 

10 Deoxycorticosterone f -7.653 -7.307 4.522 5.294 -6.820 10.885 12.194 
11 Deoxycortisol -7.881 -7.522 4.560 5.089 -7.202 8.618 9.710 
12 Dihydrtestosterone -5.919 -5.700 3.697 4.672 -6.025 -1.783 -2.380 
13 Estradiol -5.000 -4.803 3.946 5.880 -4.888 2.232 3.936 
14 Estriol -5.000 -5.194 -3.884 -5.544 -5.071 -1.421 -2.536 
15 Estrone -5.000 -4.960 0.808 1.679 -4.954 0.912 1.723 
16 Ethiocholanolone -5.255 -5.265 -0.194 -0.246 -5.342 -1.658 -2.198 
17 Pregnenolone -5.255 -5.450 -3.720 -4.537 -5.529 -5.220 -5.980 
18 17-Hydroxyregnenolone -5.000 -5.463 -9.264 -13.865 -5.405 -8.107 -10.835 
19 Progesterone -7.380 -6.730 8.814 9.652 -6.889 6.649 7.622 
20 17-Hydroxyprogesteronef -7.740 -7.025 9.238 10.883 -6.954 10.150 11.731 
21 Testosterone -6.724 -6.535 2.810 3.316 -6.480 3.630 4.159 
22 Prednisolone -7.512 -7.735 -2.972 -4.857 -7.687 -2.335 -3.273 
23 Cortisolacetate -7.553 -7.700 -1.943 -2.751 -7.647 -1.247 -3.642 
24 4-Pregnene-3,11,20-trione -6.779 -6.441 4.983 6.873 -7.007 -3.358 -4.393 
25 Epicorticosterone -7.200 -7.441 -3.344 -3.965 -7.695 -6.877 -9.164 
26 19-Nortestosteronee -6.144 -6.858 -11.616 -14.222 -6.758 -9.991 -12.091 
27 16a,17a-Dihydroxyprogesteronee -6.247 -7.439 -19.079 -21.199 -6.118 2.060 3.135 
28 16a-Methylprogesterone -7.120 -6.793 4.588 5.352 -7.239 -6.195 -7.372 
29 19-Norprogesterone -6.817 -7.019 -2.967 -3.570 -7.927 -3.108 -4.072 
30 2a-Methylcortisol -7.688 -7.773 -1.100 -1.374 -5.864 -1.148 -2.083 
31 2a-Methyl-9a-fluorocortisol -5.797 -5.940 -2.459 -4.541 -6.824 4.152 4.755 
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In the development of the quantitative model (Eq.16), three compounds (4, 26 and 27) were 

detected as statistical outlier. Once rejected the statistical outliers, a new model (Eq. 17) was 

obtained with better statistical parameters. As can be seen this new model explains more than the 

94% of the variance of the experimental CBG values. These two models uses six variables each 

one to describe 31 and 28 steroids, correspondingly. 

In addition, using stochastic linear fingerprints to describe the CBG binding affinity we obtained 

two models which are given below: 

 

CBG = -6.408(±0.080) -6.218(±1.388)*fL8(xE) +5.024(±1.000)*fL9(xE) -4.647(±1.060)*fL2(xE-H)     

+1.172(±0.628)*fL4(xE) +13.850(±3.568)*fL4(xE-H) -13.145(±3.569)*fL6(xE-H)  

            +3.386(±1.013) *fL9(xE)                                                                                                   (18)                              

N = 31    R2 = 0.87    q2
LOO

 = 0.787    F(7, 23) = 22.863    s = 0.437    scv =  0.52   p<0.0001 

 

CBG = -6.383(±0.066) -5.605(±1.088)*fL8(xE) +4.491(±0.786)*fL9(xE) -4.894(±0.841)*fL2(xE-H)     

+1.107(±0.497)*fL4(xE) +15.003(±2.789)*fL4(xE-H) -14.277(±2.780)*fL6(xE-H) 

            +3.679(±0.788) *fL9(xE)                                                                                                  (19)                               

N = 28    R2 = 0.92    q2
LOO

 = 0.88    F(7, 20) = 35.773    s = 0. 338    scv = 0.368   p<0.0001 

 

In the development of the quantitative model (Eq.18), three compounds were also detected as 

statistical outlier. Once rejected these chemicals (4, 10 and 20), a new model (Eq.19) was 

obtained with better statistical parameters. Notice that this new model explains more than the 

92% of the variance of the experimental CBG values. These two models uses seven variables 

each one to describe 31 and 28 steroids, respectively.  

All these results are summarized in Table 8, where a comparison with other computational 

scheme can be more easily performed. Nevertheless notice that the present QSAR method, non-

stochastic and stochastic 3D-chiral linear indices, obtains comparable results to other highly 

predictive QSAR models; even when they use more sophisticated statistic methods such as: 

partial least squared, principal components analysis, non-linear neural network techniques and so 

on. Many of the models objects of comparison were obtained from different procedures based on 

quantum mechanics and/or geometric principles as well as molecular mechanic approaches. 
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Table 8. Comparison of TOMOCOMD-CARDD descriptors prediction for the steroid data set 
with other 3D QSAR approaches. 
QSAR Method N n Statistic 

Method 
q2 ref. 

Similarity matrixes-based molecular descriptors 31 6 genetic NN 0.940 49 
TOMOCOMD-CARDD non-stochastic  28 6 MLR 0.904 Eq. 17 
TOMOCOMD-CARDD stochastic 28 7 MLR 0.882 Eq. 19 
MaP 29 4 PCR-VS 0.880 43 
TQSAR 31 6 MLR after PCA 0.842 45 
TOMOCOMD-CARDD stochastic 31 7 MLR 0.788 Eq. 18 
TQSI 31 3 MLR 0.775 46 
TOMOCOMD-CARDD  non-stochastic 31 6 MLR 0.767 Eq. 16 
Similarity indices 31 1 PLS 0.734 48 
MQMS 31 3 MLR and PCA 0.705 46 
CoMMA 31 6 PCR 0.689 41 
MaP 29 4 (168) PLS 0.630 43 
Wagener's 31 - k-NN and FNN 0.630 47 
MaP 29 5 (168) PCR 0.530 43 
N: number of steroids. n: number of variables. q2: leave-one-out cross-validated coefficient of determination. 
 

Final conclusions 

Our studies demonstrated that 3D-chiral linear indices can be successfully applied in QSAR 

studies which include chiral molecules. Therefore, we suggest that 2D-QSAR methods enhanced 

by chirality descriptors present a powerful alternative to popular 3D-QSAR approaches. 

We have shown here that the generalized TOMOCOMD-CARDD approach is not only able to 

discriminate between active and inactive perindoprilate stereoisomers, but also to codify 

information related to pharmacological property highly dependent on molecular symmetry of a 

set of seven pairs of chiral N-alkylated 3-(3-hydroxyphenyl)-piperidines that bind σ-receptors, 

and to predict the corticosteroid-binding globulin binding affinity of the Cramer’s steroid data 

set. This result is only a preliminary conclusion and a deeper analysis of the potential of the 3D-

chiral linear indices is necessary. However, we show that for three data sets chiral-QSAR models 

that use 3D-chiral linear indices had better or similar predictive ability as compared to other 

previously reported chiral and/or 3D-QSAR Methods. 
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