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Abstract: There are many different kinds of pathogen bacteria species with very different susceptibility 
profile to different antibacterial drugs. One limitation of QSAR models are the biological activity of drugs 
against only one bacteria species. In previous paper we develop one unified Markov model to describe the 
biological activity of different drugs tested in the literature against some of the antimicrobial species. 
Consequently predicting the probability with which a drug is active against different bacteria species with a 
single unify model is a goal of the major importance. This work develops one unified Markov model to 
describe the biological activity of more than 70 drugs tested in the references against to 96 bacteria species. 
Linear Discriminant Analysis (LDA) classifying drugs as active or non-active against the different tested 
bacteria species processed the data. The model correctly classifies 199 out of 237 active compounds 
(83.9%) and 168 out of 200 non-active compounds (84%). Overall training predictability was 84% (367 out 
of 437 cases). Validation of the model was carring out by means of external predicting series, classifying the 
model 202 out 243, 83.13% of compounds. In order to show how the model function in practice a virtual 
screening was carring out recognizing the model as active 84.5%, 480 out of 568 antibacterial compounds 
not used in training or predicting series. The present is an attempt to calculate withing a unify framework 
probabilities of antibacterial action of drugs against many different species. 

________________________________________________________________________________________ 
 
*corresponding author: gonzalezdiazh@yahoo.es or qohumbe@usc.es  
 

1. Introduction 
 

   With the increase in resistance of bacteria to 
antibiotic treatment, attention has focussed on 
developing novel means of anti-microbial therapies. 
One approach is to exploit natural mechanisms used 
by mammals including humans to combat microbial 
invaders. Modern rational drug design widely relies 
on building extensive QSAR (quantitative structure-
activity relationships) models which represent a 
substantial part of the current ‘in silico’ research. 
QSAR can then be utilized to optimizing both the 
activity profile for the molecule and its chemical 
synthesis.1 Disappointingly; QSAR studies are 
generally based on databases considering only 
structurally parent compounds acting against one 
single microbial species. As a consequence, to predict 
the antimicrobial activity for a given series of 
compounds one have to use/seek as many QSAR 
models as microbial species drugs susceptibility is 
desirable to predict.2 In previous paper, we develop 

one unified Markov model to describe the biological 
activity of different drugs tested in the literature 
against different antimicrobial species. In this sense, it 
is very important the report of one single unified 
equation to calculate the probability of activity of a 
given drug against different antimicrobial species.  

 Bacteria infections have increased dramatically 
during the past years. The bacteria have been the 
cause of some of the most deadly diseases and 
widespread epidemics of human civilization. 
Bacterial diseases such as tuberculosis, typhus, 
plague, diphtheria, typhoid fever, cholera, dysentery, 
and pneumonia have taken a mighty toll on humanity. 
Water purification, immunization (vaccination) and 
modern antibiotic treatment continueto reduce the 
morbidity and the mortality of bacterial disease in the 
Twenty-first Century, at least in the developed world 
where these are acceptable cultural practices. 
However, many new bacterial pathogens have been 
recognizing in the past 25 years and many bacterial 
pathogens, such as Staphylococcus aureus and 
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Streptococcus pneumoniae, have emerged with new 
forms of virulence and new patterns of resistance to 
antimicrobial agents.3  

There are more than 1 600 molecular descriptors 
that may be in principle generalized and used to 
solve the former problem.4-7 In addition other QSAR 
approaches have been introduced recently with 
demonstrated utility in medicinal chemistry.8-11 In 
any case, no one of  these indices have been 
extended yet to encode additional information to 
chemical structure. Our group has introduced 
elsewhere one Markov Model (MM) encoding 
molecular backbones information, with several 
applications in bioorganic medicinal chemistry. The 
method was named the MARCH-INSIDE approach, 
MARkovian CHemicals IN SIlico Design. It 
allowed us introducing matrix invariants such as 
stochastic entropies and spectral moments for the 
study of molecular properties. Specifically, the 
stochastic spectral moments introduced by our 
group have been largely used for small molecules 
QSAR problems including design of fluckicidal, 
anticancer and antihypertensive drugs. Applications 
to macromolecules have been restricted to the field 
of RNA without applications to proteins.12-15 The 
entropy like molecular descriptors has demonstrated 
flexibility in many bioorganic and medicinal 
chemistry problems such as: estimation of 
anticoccidial activity, modeling the interaction 
between drugs and HIV-packaging-region RNA, 
and predicting proteins and virus activity.16-22  

In recent studies, the MARCH-INSIDE method 
has been extended to encompass molecular 
environment interesting information in addition to 
molecular structure. This new interpretation allows 
calculating molecular thermodynamic free energy 
for many physicochemical and biological 
processes.23,24 This approach is able to take into 
consideration for instance not only the molecular 
structure of the drug but the free energy of its 
interaction with the specific microbial organism the 
drug has to eliminate, too. The present study 

develops a single linear equation based on these 
previous ideas to predict the antibacterial activity of 
drugs against different species.    

 
2. Methods 

 
2.1. Markov model for drug-target step-by-

step interaction 
 
We will consider a hypothetical situation in 

which a drug molecule is free in the space at an 
arbitrary initial time (t0). It is then interesting to 
develop a simple stochastic model for a step-by-step 
interaction between the atoms of a drug molecule 
and a molecular receptor in the time of beginning of 
the pharmacological effect. For the sake of 
simplicity, we consider a model in which unknown 
or not taken into consideration the chemical 
structure of the receptor.  

Let be, the initial contribution of the j-th atom to 
the drug-receptor interaction is 0cj(s).  In this 
symbol the c points to contribution, the 0 indicates 
that we refer to the initial interaction atom-receptor, 
and the s indicate that the contribution depends on 
the specific microbial species. Afterwards, we have 
to define the contribution kcij(s) of interaction 
between the j-th atom and the receptor given that i-
th atom has been interacted at previous time tk. With 
respect to 1cij(s) we must taking into consideration 
that once the j-th atom have interacted the preferred 
candidates for the next interaction are such i-th 
atoms bound to j by a chemical bond. In particular, 
immediately after of the first interaction (t0 = 0) 
takes place an interaction 1cij(s) at time t1 = 1 and so 
on. In consonance, we defined 1cij(s) = αij · 0cj(s), 
being αij = 1 if the j-th atom is adjacent to the i-th 
one and αij = 0 otherwise. So, one can suppose that, 
atoms binds to its receptor in discrete intervals of 
time tk. There several alternative ways in which 
such step-by-step binding process may occur. 
Figure 1 illustrates this idea. 
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Figure1. Stochastic drug-target step-by-step interaction 

 
 

Markov Model allowed us to derive the average 
contributions kCs of the atoms in the molecule to the 
gradual interaction between the drug and the 
receptor at a specific time k in a given microbial 
species (s). We derive these kCs by summing up all 
the atomic contributions of interaction 0cj(s) pre-
multiplied by the absolute probabilities of drug-
target interaction Apk(j,s):23-25 
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Such a model is stochastic per se (probabilistic 
step-by-step atom-receptor interaction in time) but 
also considers molecular connectivity (the step-by-
step atom union in space throughout the chemical 
bonding system). The markov model for drug-target 
step-by-step interaction method was describe in a 
previous paper.26 

 
2.2. Statistical analysis 
 
As a continuation of the previous sections, we 

can attempt to develop a simple linear QSAR using 
the MARCH-INSIDE methodology, as defined 
previously, with the general formula: 
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Here, kCs act as the microbial species specific 

molecule-target interaction descriptors. We selected 
Linear Discriminant Analysis (LDA)18 to fit the 
classification functions. The model deals with the 
classification of a set of compounds as active or not 
against different microbial species. A dummy 
variable (Actv) was used to codify the antimicrobial 
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activity. This variable indicates either the presence 
(Actv = 1) or absence (Actv = –1) of antimicrobial 
activity of the drug against the specific species. In 
equation (8), bk represents the coefficients of the 
classification function, determined by the least 
square method as implemented in the LDA module 
of the STATISTICA 6.0 software package.27 

Forward stepwise was fixed as the strategy for 
variable selection.19,20 

The quality of LDA models was determined by 
examining Wilk’s U statistic, Fisher ratio (F), and 
the p-level (p). We also inspected the percentage of 
good classification and the ratios between the cases 
and variables in the equation and variables to be 
explored in order to avoid over-fitting or chance 
correlation. Validation of the model was 
corroborated by re-substitution of cases in four 
predicting series.26,27  

 
2.3. Data set  

 
The data set was conformed by a set of marketed 

and/or very recently reported antibacter drugs with 
a MIC50 ≤ 10 μM against different bacterias. The 
three data sets used were as follows training series: 
199 active compounds plus 168 non-active 
compounds (367 in total); predicting series: 137 + 
106 = 243 in total; virtuals screening 568 active 
compounds. The literature reports experimental test 
of each drug against some but not all species of a 
list of 137. In consequence, we were able to collect 
1248 cases (drug/species pairs). The names or codes 
for all compounds as well as the references 
consulted can be obtained from the corresponding 
author upon request.  

 
3. Results and discussion 

 
The advantage of the present stochastic 

approach is the possibility of deriving average 
contributions to the biological activity depending on 
the probability of the states of the MM. The 
generalized parameters fit on more clearly 
physicochemical sense with respect to our previous 
ones.23-25 In specific, this work is the first one that 
introduces a single linear QSAR equation model to 
predict the antibacterial activity of drugs against 
different species.  
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Where, λ is the Wilk’s statistics, statistic for the 
overall discrimination, F is the Fisher ratio, and p 
the error level. In this equation, kCs where 
calculated for the totality (T) of the atoms in the 
molecule or for specific collections of atoms. These 
collections are atoms with a common characteristic 
as for instance are: halogens (X) or unsaturated 
Carbon atoms (C) or heteroatom-bound hydrogen 
atoms (H-Het). Summary for the forward-stepwise 
analysis shows the variables that enter first in the 
model (Table1). 

Table1.  Summary for the forward-stepwise analysis. 
  F  P  Effect 
0Cs(Het) 68.2 0.001 In
0Cs(Csat) 151.3 0.001 In
3Cs(X) 50 0.001 In
1Cs(T)  59.9 0.001 In
0Cs(Cinst) 50.4 0.001 In
5Cs (Csat) 47.6 0.001 In
2Cs (X) 24.3 0.001 Entered
3Cs (T)  12.6 0 Out
1Cs (Csat) 0.7 0.398 Out
2Cs (Csat) 0.9 0.334 Out
3Cs (Csat) 0.2 0.623 Out
4Cs (Csat) 0.2 0.641 Out
5Cs (T) 2.4 0.123 Out
4Cs (T) 13.1 0 Out
1Cs (Cinst) 0.8 0.38 Out
2Cs (Cinst) 2.3 0.127 Out
3Cs (Cinst) 2.1 0.145 Out
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The model correctly classifies 798 out of 848 
active compounds (94%) and 312 out of 400 non-
active compounds (78%). Overall training 
predictability was 84.05% (1049 out of 1248 
compounds). We validated the model by means of 
external predicting series, classifying the model 202 
out 243, 83.13% of compounds (see Table2).           
Table 2 Results of the model, analysis, validation 
and virtual-screening. 

ANALYSIS 
 Percent antibacterials non-active 

antibacterials 84.0 199 38 
non-active 84.0 32 168 

Total 84.0   
VALIDATION 

 Percent antibacterials non-active 
antibacterials 83.8 119 23 

non-active 82.2 18 83 
Total 83.0   

VIRTUAL-SCREENING 
 Percent antibacterials non-active 

antibacterials 84.5 480 88 
In addition, we used a ROC curve (see Figure 2) to 

investigate the reability of the model, being the areas 
under curve equal to 0.86 for predicting series and 
0.82 for training ones. 
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Figure 2. Results for the ROC curve. 

It indicates that the present model give results 
statistically significant and clearly different from 
those obtained with a random classifier (area = 0.5). 
In order to show how to use the model in practice 
we carried out a virtual screening recognizing 480 
out of 568 antibacterial compounds (84.5%). These 
compounds where never used in training or 
predicting series. 

The more interesting characteristic of the present 
model is that the kCs used as molecular descriptors 
depend both on the molecular structure of the drug 
and the bacterias species against the drug have to act. 
The codification of the molecular estructure is in first 
place due to the use of the adjacency factor αij to 
encode atom-atom bondig, molecular connectivity. 
The other aspect that allow encoding molecular 
structural changes is that the atomic contributions 
0cj(s) are atom-class specific. Consequently, one 
change in the molecular structure of, e.g. F by O 
necessarily implies a change in the interaction. In any 
case, the more interesting fact is that kCs are the first 
molecular descriptors reported for antimicrobial 
QSAR studies with the skill of discerning among a 
large number of bacterial species. This property is 
related to the definition of the 0cj(s). The values of 
these atomic contributions reported herein by the first 
time for antibacterial action are given in Table 3 for 
some atoms and some selected species (email 
corresponding author for detailed compilation with 
more than 90 species).  
Atomic contributions for antibacterial property can be 
ejecutate by the model, not only to distinguish 
different species (see Table 3), the model can be 
calculated the atomic contributions from different 
strains of the same species. One advantage of our 
model is to mark resistant strains of susceptible 
strains to a different drug. For instance, the Table 3 
shows the atomic contributions to antimicrobial 
action agaisnt susceptible and resistant strains of 
Staphylococcus aureus and Staphylococcus 
epidermidis. For the first of these two species, the 
regression coefficient between atomic contributions 
for resistant and susceptible strains is 0.51.  
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Conversely, the regression coefficient is 0.82 
Staphylococcus epidermidis. This notable difference 
between both regression coefficients possibly 
refelects how large is the difference between the 
respective resitant and susceptible strains.  In general, 
the atomic contributions of different atoms to the 
antibacterial property against all the studies species 
are connectied between them. The Table 4 shows 
high regression coefficients for some of contributions.  
 
 

Tabla4. Correlation values of atomic values. 
 C N O H S F Cl 

C 1.00 0.95 0.96 0.98 0.54 0.40 0.33 
N  1.00 0.97 0.96 0.45 0.38 0.23 
O   1.00 0.98 0.44 0.28 0.33 
H    1.00 0.52 0.36 0.32 
S     1.00 0.26 0.43 
F      1.00 -0.05
Cl       1.00 

 
 

Tabla 3. Some atomic contributions values for atom-receptor interactions. 
Bacteria species C N O H S F Cl 
Acinetobacter baumanni 0.22 0.18 0.2 0.23 0.18 0 0
Bacteroides thetaiotaomicron 0.21 0.23 0.2 0.21 0.2 0.3 0
Clostridium perfringens 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Corynebacterium pseudodiphtheriticum 0.15 0.18 0.17 0.12 0.12 0 0.2
Chlamydia trachomatis 0.3 0.3 0.3 0.3 0 0.3 0
Citrobacter freundii 0.18 0.17 0.17 0.18 0.16 0.3 0
Clostridium difficile 0.25 0.25 0.25 0.25 0.17 0.27 0.2
Eikenella corrodens 0.15 0.21 0.12 0.12 0 0.3 0
Enterococcus faecium 0.24 0.22 0.24 0.24 0.19 0.26 0.3
Eubacterium lentum 0.22 0.2 0.21 0.22 0.22 0.3 0.3
Haemophilus influenzae 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Klebsiella oxytoca 0.24 0.23 0.23 0.24 0.22 0.3 0
Legionella pneumophila 0.3 0.3 0.3 0.3 0 0.3 0.3
Listeria monocytogenes 0.3 0.3 0.3 0.3 0.3 0 0.3
Mycobacterium avium 0.1 0.11 0.11 0.05 0 0.14 0
Micoplasma pneumoniae 0.3 0.3 0.3 0.3 0 0.3 0.3
Moraxella catarrhalis 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Morganella morganii 0.25 0.26 0.25 0.26 0.26 0.3 0
SAMR 0.14 0.15 0.14 0.13 0.08 0.22 0.2
SEMR 0.18 0.15 0.19 0.18 0.1 0 0.3
Staphylococcus aureus 0.24 0.25 0.24 0.24 0.23 0.31 0.2
SAMS 0.23 0.23 0.22 0.22 0.24 0.22 0
Staphylococcus epidermidis  0.29 0.27 0.28 0.29 0.25 0.3 0.3
SEMS 0.24 0.24 0.24 0.24 0.24 0.3 0

 
Please, email the corresponding author for 

details on the names of all the drugs used, the 
bacterias species tested, and detailed results for 
training and validation. The above-mentioned 
flexible definition of the present approach makes it 
possible to model by the first time the present very 
heterogeneous antibacterial activity data. In fact, the 
present is the first reported unify model that allow 
one predicting antibacterial activity of any organic 
compound against a very large diversity of bacterial 
pathogens. As a sort of concluding remark and 
future research outlook one may note that the 
present QSAR methodology may be able to predict 

biological activity of drugs in more general 
situacions than the tradional QSAR models may be.  
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