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Abstract: QSAR (quantitative structure-activity relationship) studies of tyrosinase 
inhibitors employing Dragons descriptors and linear discriminant analysis (LDA) are 
presented here. A dataset of 653 compounds, 245 with tyrosinase inhibitory activity and 
408 having other clinical uses were used. The active dataset was processed by k-means 
cluster analysis to design training and prediction series. Seven LDA-based QSAR models 
were obtained. The discriminant functions applied showed a globally good classification 
of 99.79% for the best model (Eq. 3) in the training set. External validation processes to 
assess the robustness and predictive power of the obtained model was carried out. This 
external prediction set had an accuracy of 99.44%. After that, the developed were used in 
ligand-based virtual screening of tyrosinase inhibitors from the literature and never 
considered in either training or predicting series. In this case, all screened chemicals were 
correctly classified by the LDA-based QSAR models. As a final point, these fitted models 
were used in the screening of new bipiperidines series as new tyrosinase inhibitors. The 
biosilico assays and in vitro results of inhibitory activity on mushroom tyrosinase showed 
a good correspondence. These results support the role of biosilico algorithm for the 
identification of new tyrosinase inhibitors compounds. 
 
Keywords: Dragon descriptor, LDA-Based QSAR Model, Tyrosinase Inhibitor, 
Bipiperidine Series, Virtual Screening. 
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1. INTRODUCTION 

Tyrosinase (EC. 1.14.18.1) is a copper-containing enzyme widely distributed in 

nature including fungi, higher plants, and animals. This enzyme catalyzes two key 

reactions in the melanin biosynthesis pathway, the hydroxylation of monophenol to o-

diphenol (monophenolase activity) and conversion of an o-diphenol to the corresponding 

o-quinone (diphenolase activity), involving reactive oxygen species (ROS) [1, 2].  

Quinones are highly reactive compounds and can polymerize spontaneously to form high-

molecular-weight compounds or brown pigments (melanins), or react with amino acids 

and proteins that enhance the brown color produced [3].  

Alterations in melanin synthesis occur in many disease states like hyperpigmentation, 

melasma and age spots [4]. Melanin pigments are also found in mammalian brain and 

tyrosinase may play a role in neuromelanin formation in the human brain. This mixed-

function oxidase could be central to dopamine neurotoxicity and may contribute to the 

neurodegeneration associated with Parkinson´s disease [5]. Melanona specific 

anticarcinogenic activity is also known to be linked with tyrosinase activity [6]. 

The standard topical treatments for hyperpigmentation disorders include tyrosinase 

inhibitors, some compounds with the inhibitory activity are used in medicine, but the 

majority of them don’t satisfy all requirements of clinical efficacy, or adverse effects are 

observed [4, 7]. As result of these clinical behaviors and other side effects, there has been 

a constant search to find new herbal or synthesized compounds with anti-tyrosinase 

activity [8-10]. In this sense, one of our group’s researches has been focused on finding 

new potent tyrosinase inhibitors through ‘trial-and-error’ techniques [11, 12]. 

By other way, the in silico techniques have proven its usefulness in the 

pharmaceutical research for the selection/identification and/or design/optimization of new 

chemical entities (NCE),  to transform early stage drug discovery, particularly in terms of 

time- and cost-savings [13]. QSAR approaches report a high incidence of the use of 

different molecular descriptors for the  in silico drug screening [14-17].  

The congeneric dataset used in SAR and QSAR studies of tyrosinase inhibitors [11, 

12, 18-20]. don’t provide the enough tools for drug development, this kind of data only 

can be applied to structural lead optimization. Therefore database of heterogeneous 

compounds may be a successful tool in QSAR research of tyrosinase inhibitors and the 



discovery of novel lead compounds with different structural features and more effective 

activity [21-23]. 

In the present paper, we used the Dragon descriptors, extensively applied to describe 

biological activities [24, 25]. and linear discriminant analysis (LDA) strategy to find 

classification functions that allows discriminate tyrosinase inhibitors compounds from 

inactive ones. As a final point, the in silico selection (identification), isolation, and in 

vitro assays of a new series of compounds was carried out to show the applicability of 

Dragon descriptors in the biosilico drug discovery processes. 

 

2. MATERIALS AND METHODS. 

2.1 Chemical Dataset. 

Selected data set of this study was constructed warranting enough molecular diversity 

on it. Taking this into account, we selected a data set of 653 organic-chemicals having a 

great structural variability, 245 of them having tyrosinase inhibitory activity reported and 

the rest inactive ones [26] (408 compounds having different clinical uses, such as 

antivirals, sedative/hypnotics, diuretics, anticonvulsivants, hemostatics, oral 

hypoglycemics, antihypertensives, antihelminthics, anticancer compounds, and so on) 

was employed.  

The database of active compounds was chosen considering a representation of most 

of the different inhibition modes in the case of the compounds with tyrosinase inhibitory 

activity. For instance, it includes compounds that belong to different subsystems such as 

azobenzene derivatives [27], kojic acid tripeptides library [28], disubstituted-oxadiazole 

analogues [11], longifolene derivatives [29], glycyrrhetinic acid derivatives [30], novel N-

substituded N-nitrosohydroxylamines [31, 32], catechins [33], gentisic acid esters [34], 

hydroxystilbene compounds [35], benzaldoximes [36], and so on. Figure 1 shows a 

representative sample of such inhibitors from these data. In the literature appear the 

names of compounds in the database together with their experimental data [21-23]. The 

molecular structures of these 245 tyrosinase inhibitors is given in the literature [21-23].  

The great structural variability of chemicals in training and prediction series can 

assure an adequate extrapolation power. In this sense, the selection process is not  



Figure 1. Random, but not exhaustive, sample of the molecular families of tyrosinase inhibitors studied 
here. 
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constrained to compounds with only the structural features included in data and new 

series of compounds can be discovered. It is important remark that this data provides a 

useful tool for scientific research in synthesis, natural-product chemistry, theoretical 

chemistry and others areas related to the field of tyrosinase inhibitors. A k-MCA was 

carried out to split the active dataset into training and prediction tests in a rational way. 

2.2 Dragon Molecular Descriptors. 

The molecular descriptors were calculated using the Dragon [37] software; these were 

the Constitutional, Topological, BCUT, Galvez topological charge, 2D autocorrelations, 

empirical and properties descriptors [38]. Descriptors with constant values inside each 

group were discarded.  For the remaining descriptors, a pairwise correlation analysis for 

all families of descriptors was carried out. The presented exclusion method was used to 

reduce, in a first step, the collinearity and correlation between descriptors. 

2.3 Chemometric Techniques. 

k-Means Cluster Analysis(k-MCA). The statistical software package STATISTICA was 

used to develop the k-MCA [39]. The number of members in each cluster and the 

standard deviation of the variables in the cluster (kept as low as possible) were taken into 

account, to have an acceptable statistical quality of data partitions in the clusters. The 

values of the standard deviation (SS) between and within clusters, of the respective Fisher 

ratio and their p level of significance, were also examined [40, 41]. Finally, before 

carrying out the cluster processes, all the variables were standardized. In standardization, 

all values of selected variables (molecular descriptors) were replaced by standardized 

values, which are computed as follows: Std. score = (raw score - mean)/Std. deviation. 

Linear Discriminant Analysis (LDA). LDA was carried out with the STATISTICA 

software [39]. The considered tolerance parameter (proportion of variance that is unique 

to the respective variable) was the default value for minimum acceptable tolerance, which 

is 0.01. A forward stepwise search procedure was fixed as the strategy for variable 

selection. The principle of parsimony (Occam’s razor) was taken into account as a 

strategy for model selection. In connection, we selected the model with a high statistical 

significance but having as few parameters (ak) as possible. The quality of the models was 

determined by examining Wilks’ ì parameter (U statistic), the square Mahalanobis 

distance (D2), the Fisher ratio (F), and the corresponding p level [p(F)] as well as the 



percentage of good classification in the training and test sets. Models with a proportion 

between the number of cases and variables in the equation lower than 5 were rejected. 

The biological activity was codified by a dummy variable “Class”. This variable indicates 

the presence of either an active compound [(Class ) 1] or an inactive compound [Class )-

1]. The classification of cases was performed by means of the posterior classification 

probabilities. By using the models, one compound can then be classified as active, if 

ΔP% > 0, being ΔP% ) [P(Active) - P(Inactive)]100, or as inactive otherwise. P(Active) 

and P(Inactive) are the probabilities with which the equations classify a compound as 

active or inactive, respectively. 

The statistical robustness and predictive power of the obtained model was assessed using 

a prediction (test) set. Finally, the calculation of percentages of global good classification 

(accuracy), sensibility, specificity (also known as “hit rate”), false positive rate (also 

known as “false alarm rate”), and Matthews’ correlation coefficient (MCC) in the training 

and test sets permitted the assessment of the model [42]. 

Orthogonalization of Descriptors. In this study, the Randić method of orthogonalization 

was used [43]. This orthogonalization process of molecular descriptors was introduced by 

Randić several years ago as a way to improve the statistical interpretation of the models 

by using interrelated indices. This method has been described in detail in several 

publications [43-49]. 

Because the different molecular descriptors included here used entirely “different types of 

scales”, the data were standardized so that each variable has a mean 0 and a standard 

deviation of 1. In standardization, all values of selected variables (molecular descriptors) 

were replaced by standardized values, which are computed as follows: Std. score = (raw 

score - mean)/Std. deviation. 

2.4 Chemical Procedures. 

The synthesis and structural characterization of the bipiperidine series and biological 

studies and cross references has been reported in some detail elsewhere by other of our 

research team [50]. 

2.5 Experimental Corroboration of Tyrosinase Inhibitory Activity. 

Tyrosinase inhibition assay was performed with kojic acid and L-mimosine as 

standard inhibitors for the tyrosinase in a 96-well microplate format using a SpectraMax 



340 micro-plate reader (Molecular Devices, CA, USA) according to the method 

developed by Hearing [51]. Briefly, first the compounds were screened for the o-

diphenolase inhibitory activity of tyrosinase using L-DOPA as substrate. All the active 

inhibitors from the preliminary screening were subjected to IC50 studies. Compounds 

were dissolved in methanol to a concentration of 2.5%. Thirty units of mushroom 

tyrosinase (28 nM from Sigma Chemical Co., USA) was first preincubated with the test 

compounds in 50 nM Na-phosphate buffer (pH 6.8) for 10 min at 25 oC. Then the L-

DOPA (0.5 mM) was added to the reaction mixture and the enzymatic reaction was 

monitored by measuring the change in absorbance at 475 nm (at 37 oC) due to the 

formation of the DOPAchrome for 10 min. The percent inhibition of the enzyme was 

calculated as follows, by using MS Excel®TM 2000 (Microsoft Corp., USA) based 

program developed for this purpose: 

Percent inhibition = [B – S/B]x100                                                                               (1) 

Here the B and S are the absorbances for the blank and samples, respectively. After 

screening of the compounds, median inhibitory concentrations (IC50) were also 

calculated. All the studies have been carried out at least in triplicates and the result 

represent the mean ± SEM (standard error of the mean). Kojic acid and L-mimosine were 

used as standard inhibitors for the tyrosinase and both of them were purchased from 

Sigma Chem. Co., USA. 

3. RESULTS AND DISCUSSION. 

3.1 Design of training and test set.  

In first place the molecular diversity of active compounds should be assured , and in 

this sense a hierarchical cluster analysis (CA) is developed with the STATISCA software 

[39]. Figure 2 show a dendogram, where can be observe a largely number of different 

subsets proving the structural diversity of the active data set (tyrosinase inhibitors).   

Inactive compounds selected for both, training and test set, we chose at random 408 

drugs, having a series of other clinical uses. The classifications of these compounds as 

‘inactive’ (non-inhibitors of tyrosinase) does not assure that any inhibitory activity do not 

exist for those organic-chemicals that not have been detected. This problem can be 

reflected in the results of classification for the series of inactive chemicals [52]. 



Second, a k-MCA is carried out to ensure that any chemical subsystem selected will 

be in both learning and external sets, in a representative way. The k-MCA was made with 

active compounds and partitioned the tyrosinase inhibitors into 10 clusters. Topological 

descriptors were used, with all variables showing p-levels <0.05 for the Fisher test. The 

results are shown in Table 1. In the case of inactive dataset, the selection of compounds 

for every subset (training and test) was made at random selection. 
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Figure 2. A dendrogram illustrating the results of the hierarchical k-NNCA of the set of 
tyrosinase inhibitors used in the training and prediction set of the present work. 

 

Table 1. Main Results of the k-MCAs, for Tyrosinase Inhibitors and Inactives Drug-like 
Compounds. 
Analysis of Variance 
Variables Between 

SSa 
Within 
SSb 

Fisher 
ratio (F) 

p-levelc 

Tyrosinase Inhibitors Clusters (k-MCA ) 
X0Av 0,87 3,57 6,42 0,00 
BIC3 2,71 3,46 20,43 0,00 
CIC1 185,59 6,03 803,24 0,00 
aVariability between groups. 
bVariability within groups. 
cLevel of significance 

Afterwards, the selection of the training and prediction sets for the active database 

was performed by taking, in random way, compounds belonging to each cluster. From 

these 653 chemicals, 474 were chosen at random to form the training set, being 182 of 



them actives and 292 inactive ones. The remaining subseries composed of 63 tyrosinase 

inhibitors and 116 compounds with different biological properties were prepared as test 

set for the external validation of the classification models (179 compounds). These 

chemicals were never used in the development of the classification models. Figure 3 

illustrates graphically the above-described procedure where one independent cluster 

analysis for active compounds and a random selection for the inactive compounds, were 

performed to select a representative sample for the training and test sets. 
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10 Active
Clusters

k-MCA Random
selection
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(179 chemicals)

Trainig set
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Figure 3. General algorithm used to design training and test sets. 

3.2. Finding Discriminant Models. 

3.2.1. Classification Functions.  

Although they could be used many different chemometric techniques to fit 

discriminant functions, such as SIMCA or neural networks, in our case, we select the 

linear discriminant analysis (LDA) given the simplicity of the method, in order to derive 

discriminant functions that permit the classification of compounds as tyrosinase inhibitors 

or inactive ones. The LDA has become in an important tool for the prediction of chemical 

bioactive properties [47-49, 53-57]. 

In the present study, we developed discriminant functions, using Dragon descriptors 

as independent variables. Here were obtained 7 LDA-based QSAR models. The models 

used the Constitutional, Topological, BCUT, Galvez topological charge, 2D 

autocorrelations, empirical and properties as molecular descriptors in this order (Eqs. 2-



8), respectively. The classification models obtained are given in Table 2, and the meaning 

of the variables included in the models, are depicted in Table 3. 

Table 2. Discriminant Models Obtained with the 0D-2D Dragon Descriptors. 
 
Class = -4.438x102  +72.326 Mv +4.061x102 Me -2.464 AMW +6.450 Ms +2.036 nCIC -0.690 nAB  
            +2.450 nR05                                                                                                                                     (2)    
 
Class = -96.067 +1.988x102 X0Av +91.907 BIC3 +6.853 CIC1                                                                (3)      
                                                                                           
Class = -40.001 +8.931 BEHv1 +8.238 BELm1 -3.596 BEHm7 +4.772 BELm5 +6.231 BELv2  
             -2.318 BEHp4 +2.795 BELe4                                                                                                         (4) 
               
Class = -5.143 +32.291 JGT -0.942 GGI1 +4.553 GGI6 -1.120 GGI2 + 1.831 GGI5                               (5)    
 
Class = -74.331 +88.885 ATS1v -8.054 ATS2m -2.287 ATS4m +44.373 ATS3e                                     (6)   
                                                                              
Class = -7.020 -12.331 Hy +1.048 Ui                                                                                                          (7)   
 
Class = -2.854 -6.898x10-5 MR -7.801x10-3 PSA -3.811x10-4  MLOGP                                                     (8)   
 

 

Table 3. Symbols of the descriptors used in the QSAR models and their definitions. 
Symbols Descriptor definition 
Mv Molecular weight 
Me Mean atomic Sanderson electronegativity (scaled on Carbon atom)
AMW Average molecular weight 
Ms Mean electrotopological state
nCIC Number of rings 
nAB Number of aromatic bonds 
nR05 Number of 5-membered rings
X0Av Average valence connectivity index γ-0
BIC3 Bond information content (neighborhood symmetry of 3-order)
CIC1 Complementary information content (neighborhood symmetry of 1-order) 
BEHv1 Highest eigenvalue n.1 of Burden matrix/weighted by atomic van der Waals volumes 
BELm1 Lowest eigenvalue n.1 of Burden matrix/weighted by atomic masses
BEHm7 Highest eigenvalue n.7 of Burden matrix/weighted by atomic masses
BELm5 Lowest eigenvalue n.5 of Burden matrix/weighted by atomic masses
BELv2 Lowest eigenvalue n.2 of Burden matrix/ weighted by atomic van der Waals volumes 
BEHp4 Highest eigenvalue n.4 of Burden matrix/weighted by atomic polarizabilities 
BELe4 Lowest eigenvalue n.4 of Burden matrix/ weighted by atomic Sanderson electronegativities
JGT Global topological charge index
GGI1 Topological charge index of order 1
GGI2 Topological charge index of order 2
GGI5 Topological charge index of order 5
GGI6 Topological charge index of order 6
ATS1v Broto-Moreau autocorrelation of a topological structure-lag 1/weighted by atomic van der Waals
ATS2m Broto-Moreau autocorrelation of a topological structure-lag 2/weighted by atomic masses 
ATS4m Broto-Moreau autocorrelation of a topological structure-lag 4/weighted by atomic masses 
ATS3e Broto-Moreau autocorrelation of a topological structure-lag 3/weighted by atomic Sanderson
Hy Hydrophilic factor 
Ui Unsaturation index 
MR Ghose-Crippen molar refractivity
PSA Fragment-basesd polar surface area
MLOGP Moriguchi octanol-water partition coeff. (log P)



 

Table 4 summarizes the prediction performances and the statistical parameters for 

LDA-based QSAR models with the training set. The equations showed to be statistically 

significant at p-level (p < 0.0001).Fitted model for the equation 3 showed the best result 

in these classification functions, this best model 3 have an appropriate overall accuracy of  

99.79% in the training set. The equation showed a high Matthews correlation coefficients 

(MCC = 1). MCC quantifies the strength of the linear relation between the molecular 

descriptors and the classifications, and it may often provide a much more balanced 

evaluation of the prediction than, for instance, the percentages (accuracy) [42]. 

Also, we list in Table 4 most of the parameters commonly used in medical statistics 

[sensitivity, specificity and false positive rate (also known as ‘false alarm rate’)] for the 

whole set of developed models. While the sensitivity is the probability of correctly 

predicting a positive example, the specificity (also known as ‘hit rate’) is the probability 

that a positive prediction is correct [42]. These statistical parameters mentioned above, 

together with the linear discriminant canonical statistics: canonical regression coefficient 

(Rcan) as well as chi-squared (χ2) and its p-level [p(χ2)] were checked and results are 

depicted in the same Table 4.  

Table 4. Prediction Performances and Statistical Parameters for LDA-based QSAR 
Models in the Training Set.  
Modelsa Matthews 

Corr. 
Coefficient (C) 

Accuracy 
‘QTotal’ 
(%) 

Specificity
(%) 
 

Sensitivity 
‘hit rate’ 

(%) 

False 
positive 
Rate (%)

Wilks’ 
λ 

D2 F Chi-Sqr
(χ2) 

Canonical
R(Rcan)

b 

LDA-based QSAR Models Obtained Using the Dragon Descriptors 
Eq. 2 (7) 0.99 99.58 98.91 100 0.68 0.04 100.0 1582 1503 0.98 
Eq. 3 (3) 1 99.79 99.45 100 0.34 0.02 180.5 6719 1779 0.99 
Eq. 4(7) 0.93 96.84 95.13 96.70 3.08 0.21 16.01 253.2 735.3 0.89 
Eq. 5 (5) 0.97 98.52 96.79 99.45 2.05 0.18 19.5 433.6 811.5 0.91 
Eq. 6 (4) 0.98 98.95 97.33 100 1.71 0.05 80.9 2253 1413 0.97 
Eq. 7 (2) 0.93 97.05 100 92.30 0 0.33 8.49 475.2 520.2 0.82 
Eq. 8 (3) 0.85 92.40 83.80 99.45 11.99 0.45 5.21 193.8 378.9 0.74 
a Between brackets the quantity of variables of the models. 
b Canonical correlation coefficient obtained from the linear discriminant canonical analysis 

 

The canonical transformations of the LDA results with the Topological descriptors 

(Eq. 3) give rise to canonical roots with a good canonical correlation coefficient of 0.99. 

Chi-square test permits us to asses the statistical signification of this analysis as having a 

p-level <0.0001.   



 

3.2.2 Validation Test. 

The statistical parameters in the complete training dataset provide some assessment of 

the goodness of the fit of the models, but it is not enough to assure the predictive power 

of the models. For that reason we carried out an external validation process using a test 

set [58, 59]. 

In this sense, the activity of the compounds in the test set was predicted with the 

obtained discrimination functions. The equation 3 shows a 99.44% (C = 0.99) in the 

prediction series. The results of the classifications for all models in the test set are 

depicted in Table 5. A plot of the ΔP% (see “Materials and Methods”) from model 3, for 

each compound in the training and test sets is illustrated in Figure 4, where the good 

classification results obtained with the current approach can be observed. 
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Figure 4. Plot of the ΔP% from Eq. 3 (using the Dragon descriptors) for each compound 
in the training and test sets. Compounds 1-182 and 183-245 are active (tyrosinase 
inhibitors) in training and test sets, respectively; chemicals 246-537 and 538-653 are 
inactive (non-tyrosinase inhibitors) in both training and test sets, correspondingly. 

 

 The accuracy and other statistical parameters (sensitivity, specificity and false 

positive rate) of the test set are depicted in Table 5. These results validate the models for 



the use in the ligand-based virtual screening taking into consideration that 85.0% is 

considered as an acceptable threshold limit for this kind of analysis [60]. 

Table 5. Prediction performances for LDA-based QSAR models in the test set. 
Modelsa Matthews Corr. 

Coefficient (C) 
Accuracy 
‘QTotal’ (%) 

Specificity 
(%) 

Sensitivity 
‘hit rate’ (%) 

False positive 
Rate (%) 

LDA-based QSAR Models Obtained Using the Dragon Descriptors 
Eq. 2 0.98 98.88 96.9 100 1.7 
Eq. 3  0.99 99.44 98.4 100 0.9 
Eq. 4 0.89 94.97 92.2 93.7 4.3 
Eq. 5  0.96 98.32 98.4 96.8 0.9 
Eq. 6  0.96 98.32 95.5 100 2.6 
Eq. 7  0.98 98.88 100 96.8 0 
Eq. 8 0.78 88.26 75.0 100 18.1 
 
3.2.3 Descriptors Orthogonalization Process. 

In other hand, a good method to eliminate the collinearity is the pairwise correlation 

analysis, but the correlation between variables can persist, how was observed after a close 

inspection of the molecular fingerprints included in the best LDA-based QSAR model. In 

Table 6 we give the correlation coefficient of the molecular descriptors in Equation 3. 

It is well known that interrelation among the molecular descriptors makes difficult the 

interpretation of the QSAR model [44-49], and underestimates the utility of the 

correlation coefficient in a model. To overcome this difficulty, we used the Randić’s 

orthogonalization process of the molecular descriptors. The main philosophy of this 

approach is to avoid the exclusion of descriptors on the basis of its collinearity with other 

variables included in the model.  

Table 6. Correlation matrix of the variables in the equation 3. 
 Non-orthogonal Topological Descriptors 
 X0Av BIC3 CIC1 
X0Av 1.00 0.91 0.45 
BIC3  1.00 0.39 
CIC1   1.00 

 
However, in some cases strongly interrelated descriptors can enhance the quality of a 

model because the small fraction of a descriptor which is not reproduced by its strongly 

interrelated pair can provide positive contributions to the modeling. This process is an 

approach in which molecular descriptors are transformed in such a way that they do not 

mutually correlate (see Section 2.3). Both, the non-orthogonal (original) descriptors and 



the derived orthogonal descriptors contain the same information. Therefore, the same 

statistical parameters of the QSAR models are obtained [44-49]. 

In Equations 9 are shown the results of the orthogonalization of the topological 

descriptors included in model:  

Class = -43.937 +77.7261O(X0Av) +35.1422O(BIC3) +4.7803O(CIC1)                    (9) 

 N = 474 λ =0.02 D2 = 180.5 F = 6719 R = 0.99 χ2 = 1779Q = 99.79 C = 1 

 

Here, we used the symbols mO(b), where the superscript m expresses the order of 

importance of the variable (b) after a preliminary forward stepwise analysis and O means 

orthogonal.  

It is important remark here that the orthogonal descriptor-based models coincide with 

the collinear (i.e. ordinary) topological descriptors-based models in all the statistical 

parameters. The statistical coefficients of LDA-QSARs λ, F, D2, C, accuracy, are the 

same whether we use either a set of non-orthogonal descriptors or the corresponding set 

of orthogonal indices. This is not surprising, because the latter models are derived as a 

linear combination of the former ones and cannot have more information content than 

them [44-49]. 

In the process of orthogonalization the data were standardized so that each variable 

has a mean of zero and a standard deviation of 1, because the different molecular 

descriptors used entirely “different types of scales”. 

3.3 Novel Tyrosinase Inhibitors Through Virtual Screening Identification. 

One of the most common approaches reported recently in the area of drug discovery 

are the in silico methods, this tools permit the assay of virtual libraries of chemical, and 

can predict ahead of time, the likely result of many-year biological-property study. This 

process is associated to the great costs involve in the discovering of new drug-like 

compound by the pharmaceutical industries. Virtual essays can be considered in this case 

a novel paradigm inside the new automation and information technologies, and can 

provide to the pharmaceutical industry with platforms to translate clinical liabilities into 

simple, fast and cost-effective in vitro screening assays, applicable to the early phases of 

drug discovery [61]. 



In this context and with the aim to prove the possibilities of the present approach for 

the ligand-based virtual screening of tyrosinase inhibitors, we chose 81 compounds, 

whose names are depicted in Table 9. These organic-chemicals were reported active 

compounds from the medicinal chemistry literature (see the last column of Table 7: Ref.).   
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Figure 5. A dendrogram illustrating the results of the hierarchical k-NNCA of the set of 
active chemicals used for evaluating the predictive ability of the QSAR models for 
ligand-based virtual screening. 

 

In the first instance, a k-NNCA was realized to observe the molecular variability in 

the data set of the virtual screening. As can be seen in dendrogram of Figure 5 there are 

many different subsystems, showing the great molecular diversity of the selected 

chemicals in this set.     

The results for the classification of the compounds in the virtual screening (external 

set) are summarized in Table 7.. All screened chemicals including in this “simulated” 

virtual screening experiment were well classified as active for the best LDA-based QSAR 

model developed with the topological descriptors (Eq. 3). A plot of ΔP% values of the 

good classification for the models 3 is given in Figure 6. This figure is a pictorial 

representation of the accuracy of the best model where the 100% compounds were 

classified well by Equation 3.  

 



Table 7. Results of the Virtual Screening. 
Compounda Classb Ref.c Compounda Classb Ref.c 

Active Compounds (Tyrosinase Inhibitors) 

1 p-nitrophenol +++++++ A 
B 42 Methimazole  +++++++ V 

2 3-(3,4-dihydroxyphenyl)- 
   l-alanine +++++++ C 43 BMY-28438 +++++++ V 

3 3-amino-4-hydroxybenzoic acid +++++++ C 44 Captopril +++++++ W 
4 4-amino-3-hydroxybenzoic acid +++++++ C 45 Yohimbine +++++-+ X 
5 3,4-diaminobenzoic acid +++++++ C 46 4-(phenylazo)phenol +++++++ Y 
6 3-aminobenzoic acid +++++++ C 47 SACat +++++++ Y 
7 4-aminobenzoic acid +++++++ C 48 NPACat +++++++ Y 
8 4,6-O-hexahydroxy 
    diphenylglucose +++++++ D 49 DNPACat +++++++ Y 

9 Tunicamycin  +++++++ E 50 EDTA +++++++ Z 
10 methyl p-coumarate  +++++++ F 51 Dodecyl gallate +++++++ a 
11 o-phenylphenol +++++++ F 52 Gallic acid +++++++ a 
12 Phenylhydroquinone +++++++ F 53 (+)-flavanone +++++++ b 

13 Chamaecin +++++++ F 
G 54 (-)-pinocembrin +++++++ b 

14  Stearyl glycyrrhetinate +++++++ H 55 (+)-naringenin +++++++ b 
15 3-flurotyrosine +++++++ I 56 (+)-dihydromorin +++++++ b 
16 N-acetyltyrosine  +++++++ I 57 Flavone +++++++ b 
17 N-formyltyrosine +++++++ I 58 Myricetin +++++++ b 
18 Gentisic acid +++++++ J 59 Artocarpin +++++++ b 
19 6-BH4 +++++++ K 60 Artocarpesin +++++++ b 
20 7-BH4 +++++++ K 61 Isoartocarpesin +++++++ b 
21 Propylparaben +++++-+ L 62 (-)-Angolensin +++++++ b 
22 Phenylalanine +++++++ I 63 Pinosylvin +++++++ b 
23 Dithiothreitol ++-++-+ M 64 4-prenyloxyresveratrol +++++++ b 
24 Azelaic acid ++-++++ N 65 26 +++++++ b 
25 Undecandioic acid ++-++++ N 66 27 +++++++ b 
26 Suberic acid ++-++++ N 67 28 +++++-+ b 
27 Sebacic acid ++-++++ N 68 29 +++++++ b 
28 Dodecandioic acid ++-++++ N 69 30 +++++++ b 
29 Tridecandioic acid ++-++++ N 70 31 +++++++ b 
30 Traumatic acid ++-++++ N 71 32 +++++++ b 
31 Pantothenic acid +++++++ I 72 34 +++++++ b 
32 5-(hydroxymethyl)-2-furfural  +++++++ O 

P 73 35 +++++++ 
 b 

33 Hinokitiol +++++++ Q 74 36 +++++++ b 
34 Penicillamine +++++++ R 75 37 +++++++ b 
35 Toluic acid +++++++ A 76 38 +++++++ b 
36  +++++-+ S 77 39 +++++++ b 
37  +++++++ S 78 40 +++++++ b 
38 3,5-dihydroxy- 
     4´-O-methoxystilbene +++++++ T 79 41 +++++++ b 
39 p-hydroxybenzoic acid +++++++ U 80 2´-O-feruloylaloesin +++++++ c 
40 o-hydroxybenzoic acid +++++++ U 81 Barbaloin +++++++ c 
41 Cysteine ++-++-+ V    
aThe molecular structures of these tyrosinase inhibitors is given in the literature [21-23]. bResults of the classification of compounds in 
this set: (i) Classification of each compounds using the obtained models with the Dragon descriptors in the following order:  Eq. 2, 3, 
4, 5, 6, 7, and 8 .cReferences taken from the literature: ABubacco, L.; van Gastel, M.; Groenen, E. J. J.; Vijgenboom, E.; Canters, G. 
W. J. Biol. Chem. 2003, 278, 7381–7389. Bvan Gastela, M.; Bubaccob, L.; Groenena, E. J. J.; Vijgenboomc, E.; Cantersc, G. W. FEBS 
Lett. 2000, 474, 228-232. CGasowskaa, B.; Kafarskia, P.; Wojtasek, H. Biochim. Biophys. Acta. 2004, 1673, 170–177. D 
http://open.cacb.org.tw/index.php (2005-03-03 09:09:51). ETakahashi, H.; Parsons, P. G. J. Invest. Dermatol. 1992, 98, 481-487. 
FKubo, I.; Niheia, K.; Tsujimoto, K. Bioorg. Med. Chem. 2004, 12, 5349–5354. GNihei, K-I.; Yamagiwa, Y.; Kamikawab, T.; Kubo, I. 



Bioorg. Med. Chem Lett. 2004, 14, 681–683. HUm, S-J.; Park, M-S.; Park, S-H.; Han, H-S.; Kwonb, Y-J.; Sin, H-S.  Bioorg. Med. 
Chem. 2003, 11, 5345–5352. Ihttp://www.thecosmeticsite.com/formulating/959621.htlm (April-00). JCurto, E. V.; Kwong, C.; 
Hermersdorfer, H.; Glatt, H.; Santis, C.; Virador, V.; Hearing, V. J.; Dooley, T. P. Biochem. Pharmacol. 1999, 57, 663–672. KWood, 
J. M.; Schallreuter-Wood, K. U.; Lindsey, N. J.; Callaghan, S.; Gardner, M. L. G  Biochem. Biophys. Res. Commun. 1995, 206, 480–
485. LHori, I.; Nihei, K-I.; Kubo, I. Phytother. Res. 2004, 18, 475–479. MNaish-Byfield, S.; Cooksey, C. J.; Riley, P. A. Biochem. J. 
1994, 304, 155–162. NNazzaro-Porro, M.; Passi, S. J. Invest.  Dermatol. 1978, 71, 205-208. OSharma, V. K.; Choi, J.; Sharma, N.; 
Choi, M.; Seo, S-Y. Phytotherapy Res. 2004, 18, 841-844. PKang, H. S.; Choi, J. H.; Cho, W. K.; Park, J. C.; Choi, J. S. Arch Pharm 
Res. 2004, 7, 742-50. QSakuma, K.; Ogawa, M.; Sugibayashi, K.; Yamada, K.; Yamamoto, K. Arch Pharm Res. 1999, 4, 335-339. 
RLovstad, R. A. Biochem. Pharmacol. 1976, 25, 533-535. SKubo, I.; Kinst-Hori, I.; Yokokawa, Y. J. Nat. Prod. 1994, 57, 545-551. 
TRegev-Shoshani, G.; Shoseyov, O.; Bilkis, I.; Kerem, Z. Biochem. J. 2003, 374, 157–163. UBernard, P.; Berthon, J-Y. Int. J. 
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The verification of the predictions carried out by all the obtained models comes from 

the recent reports in the literature from where these compounds were selected (see the last 

column of Table 7: Ref.). 

After this good results, a next step should be do, the inclusion of these ‘novel’ 

compounds in the training set, and carry out new models to find novel discrimination 

functions. This new model can be significantly different from the previous one, due to the 

inclusion of a new structural pattern, but it should be able to recognize a greater number 

of such compounds as tyrosinase inhibitors. Therefore, this iterative process can improve 

the quality of the classification models in which a great quantity of compounds with 

novel structural features is evaluated against the activity of the enzyme. 
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Figure 6. Plot of the ΔP% from Eq. 3 (using the Dragon descriptors) for each compound 
selected in virtual screening protocols.  
 



Several drugs were identified by the discrimination models as possible tyrosinase 

inhibitors. This result is the most important validation for the models developed here, 

because we have demonstrated that they are able to detect a series of drugs as active and 

these chemicals have shown the predicted activity. The drugs with some pharmacological 

uses selected as new lead tyrosinase inhibitors have well-established methods of synthesis 

as well as toxicological, pharmacodynamical and pharmaceutical behaviours are also well 

known. 

3.4 In Silico Novel Tyrosinase Inhibitors and Experimental Results. 

In the following section, and taking into account all the above steps describe in past 

sections, we were conducted to explore the ability of our discriminant models to find 

novel compounds. Besides, the good results in the algorithm presented encouraged us to 

carry out an in-silico screening to search novel active compounds not described yet in the 

literature as tyrosinase inhibitors. 

As previously indicated, one of our research teams has been focused mainly on trial-

error searching for new tyrosinase inhibitors [9, 11, 12]. At the same time, we are also 

identifying new drug candidates using computational screening (based on QSAR 

techniques). For that reason, we perform in silico essays for bipiperidines series isolated 

and characterized from natural sources (herbal plants), searching novel tyrosinase 

inhibitors by using the discriminant functions obtained through the Dragons descriptors 

and LDA technique. 

The LDA-based QSAR models were used to evaluate seven compounds and in order 

to corroborate the predictions, were prepared with excellent yields by very economic and 

simple methods, and evaluated in vitro against tyrosinase enzyme. In Table 8 they are 

given the ΔP% values of the compounds in this series, as well as their canonical scores 

using all the developed models. From these results, we can conclude that the current 

approach is a suitable alternative for the selection/identification of novel tyrosinase 

inhibitors which may be used to prevent or treat pigmentation disorders. 

A very good coincidence among the theoretical predictions and the observed activity 

for all the compounds is observed.  In the study of the inhibitory activity all seven 

compounds showed effectiveness in mushroom tyrosinase inhibition (see Table 8). The 

compound BP1 (IC50 = 110.79μM), showed mild inhibition against the enzyme, the 



compounds BP2 (IC50 = 29.94μM), BP5 (IC50 = 18.08μM), BP7 (IC50 = 19.52μM) 

exhibited pronounced activity when compared with Kojic Acid, a tyrosinase inhibitor 

reference.  The remaining compounds, BP3 (IC50 = 6.64μM), BP6 (IC50 = 8.76μM) had 

more potent activity than Kojic acid (IC50 =16.67μM) but less that L-mimosine (IC50 = 

3.68μM) another standard tyrosinase inhibitor.  Finally, we want to highlight the case of 

compound BP4 (IC50 =1.72μM) with a very potent activity against the enzyme, even 

compared with the reference drugs. In Figure 7 are shown the structures of the 

bipiperidine compounds.    
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Figure 7. Molecular structure of the new bipiperidine series. 

A k-NNCA for all the active compounds included in the training, test, virtual 

screening sets and the novel chemicals was carried out. This hierarchical cluster analysis 

was developed to compare similarities between new discovered active compounds and 

the complete active dataset. The dendrogram ilustrates the great diversity of subsystems 

in the complete data under investigation (see Figure 8). An exhaustive analysis of each 

cluster showed that these new compounds were included in many clusters.   

The principal impact of these models developed here, is its capability to recognize new 

tyrosinase inhibitors. This is one of the major goals and can be considered as a very 

promising tool for the future design of new compounds with higher tyrosinase activity. In 

this sense, compound BP4 presented more potent effect in the inhibition against the 

enzyme than L-Mimose (reference drug) and is available consider this organical-chemical 

as a hit for drug-discovery. The identification of novel structural subsystems can be 

making in search of drug-like compounds with such activity, after examining the 



Table 8. Results of Ligand-based in silico Screening and Tyrosinase Inhibitory Activities of New Bipiperidine Series. 
Compound* ΔP%a Scoresa ΔP%b Scoresb ΔP%c Scoresc ΔP%d Scoresd ΔP%e Scorese ΔP%f Score

sf 
ΔP%g Scoresg IC50 ±SEMg  

     ( μM) 
BP1 100 -3.88 100 -8.65 -19.72 0.48 45.76 -0.84 100 -5.08 -96.85 -0.92 87.78 1.67 110.79±0.0583 
BP2 100 -4.90 100 -8.48 -87.21 -0.09 99.66 -2.06 100 -5.29 94.98 1.76 87.02 1.64 29.94±0.4289 
BP3  100 -4.89 100 -8.47 99.94 2.59 99.57 -2.01 100 -5.88 99.72 2.76 86.98 1.64 6.64±0.3529 
BP4  100 -4.45 100 -8.45 95.03 1.50 97.93 -1.65 100 -5.81 99.51 2.56 88.52 1.70 1.72±0.0438 
BP5 100 -7.25 100 -7.96 -79.12 0.05 99.99 -2.89 100 -5.22 78.04 1.22 87.01 1.64 18.08±0.3494 
BP6 100 -6.08 100 -8.45 99.76 2.26 99.99 -2.93 100 -5.26 97.15 1.95 80.06 1.44 8.76±0.1186 
BP7 100 -4.65 100 -8.41 80.78 1.14 64.56 -0.97 100 -5.58 99.24 2.41 87.71 1.67 19.52±0.0003 
*The molecular structures of these chemicals are shown in Figure 10. a,b,c,d,e,f,gΔP% = [P(Active) - P(Inactive)]x100 as well as canonical scores of each 
compound in this set: (i) Classification of each compound using the obtained models with the Dragon descriptors in the following order:  Eqs. 2, 3, 4, 5, 6, 7, 
and 8. hIC50 are the 50% inhibitory concentrations against the enzyme tyrosinase and SEM. is the standard error of the mean. 
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Figure 8. A dendrogram illustrating the results of the hierarchical k-NNCA of the set of all active chemicals (tyrosinase inhibitors) 
included in training, test, virtual screening and new active bipiperidine series discovery in the present work. 
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pharmacological, toxicity, pharmacokinetic properties and good activity in clinical 

animal essays. Finally, is important to remark that our aim in this study is show, how the 

models can be used for potential drug discovery. 

 

4. CONCLUSIONS 

The melanogenesis disorders, hyperpigmentation and others skin diseases are related 

to the tyrosinase. This enzyme has become in a useful target for the discovery of new 

tyrosinase inhibitors due to the broad applications in many fields [1-7]. The areas of 

pharmaceutical, cosmetic, agricultural sciences has focus in the tyrosinase inhibitors field 

research due to the usefulness of this kind of compounds.   

However, the cost associated to drug discovery make it slow, for that reason the 

implementation of more rational search methodologies is recommended. In this case, the 

computational tools can aid us to speeding up the assaying of drug-like compounds. 

These more efficient strategies such as vHTS (virtual High-Throughput Screening), can 

be used in complement with the QSAR models in the virtual assays, and the costs can be 

reduced in all terms of massive screening [62, 63]. 

In this sense, and knowing that most of the tyrosinase inhibitors described in the 

literature until today, has been discovered through trial-error methods, we have shown the 

biological in silico evaluation with QSAR models of new compounds isolated and 

characterized from herbal plants. 

Besides, we presented the application of the Dragon descriptors to the rational 

selection of new active compounds against the tyrosinase enzyme. The usefulness to 

discriminate novel active compounds from inactive ones as tyrosinase inhibitors is 

depicted. This classification functions obtained were applied to pools of chemicals in 

simulated virtual screening of compounds with the activity under study exhibiting good 

results. Active database presented here, can be considered a useful for the entire scientist 

in the natural-product, theoretical, synthesis chemistry area and others related to the field 

of tyrosinase inhibitors researches. 

The molecular descriptors are becoming in an attractive tool for efficient drug design 

process. Its usefulness is proven here in an experimental screening of novel bipiperidine 

series using pattern recognition techniques (LDA). The in vitro assays of the isolated and 
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characterized compounds were done to corroborate the in silico results. New seven 

chemical exhibited anti-tyrosinase activity, proving that the algorithm presented can 

constitute a step forward in the search of new structural features with the activity. In this 

way, and looking for more efficient ways to discover new potent-selective tyrosinase 

inhibitors which may be used to prevent or treat pigmentation disorders; can be said that, 

predictive in silico models could be used for drug target identification, accelerating the 

selection process of lead compounds [64]. 
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