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Abstract 
Malaria is one of the most significant public health concerns in many tropical and 
subtropical regions of the world, with 40% of the world population exposed to malaria-
causing parasites. Increasing resistance of Plasmodium spp. to existing therapies has 
heightened alarms about malaria in the international health community. Nowadays there 
is a pressing need to identify and develop new drug-based antimalarial therapies. In an 
effort to overcome this problem, the main aim of this study was to develop simple linear 
discriminant-based QSAR models for the classification and prediction of antimalarial 
activity using some of the TOMOCOMD-CARDD fingerprints, so as to enable 
computational screening from virtual combinatorial datasets. In this sense a database of 
1562 organic-chemicals having great structural variability; 597 of them antimalarial 
agents and 965 compounds having other clinical uses, was analyzed and presented as a 
helpful tool not only for theoretical chemist but also for other researchers in this area. 
These series of compounds were processed by a k-means cluster analysis in order to 
design training and predicting sets. Afterward, two linear classification functions were 
derived toward discrimination between antimalarial and non-antimalarial compounds. 
The models (including non-stochastic and stochastic indices) classify correctly more than 
93% of compounds in both training and external prediction datasets. They showed high 
Matthews´ correlation coefficients; 0.889 and 0.866 for training and 0.855 and 0.857 for 
test set. Models predictivity were also assessed and validated by the random removal of 
10% of the compounds to form a test set, for which predictions were made from the 
models. The overall mean of the correct classification for this process (leave-group 10% 
full-out cross-validation) for obtained equations with non-stochastic and stochastic 
quadratic fingerprints were 93.93% and 92.77%, correspondingly. The quadratic maps-
based TOMOCOMD-CARDD approach implemented in this work was successfully 
compared with four of the most useful models for antimalarials selection reported to date. 
The models developed with non-stochastic and stochastic quadratic indices were then 
used in a simulation of a virtual search for Ras FTase inhibitors with antimalarial activity; 
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70% and 100% of the 10 inhibitors used in this virtual search were correctly classified, 
showing the ability of the models to identify new lead antimalarials. Finally, these two 
QSAR models were used in the identification of previously un-known antimalarials 
compounds. In this sense, three synthetic intermediaries of quinolinic compounds were 
evaluated as active/inactive ones using the developed models. The synthesis and 
biological evaluation of these chemicals against two Malaria strains, using Chloroquine 
as reference, was performed. An accuracy of 100% with the theoretical predictions was 
observed. The compound 3 shown antimalarial activity, being the first report of an 
arylaminomethylenemalonate having such activity. This result opens a door to a virtual 
study considering a higher variability of the central core already evaluated, as well as 
other chemicals not included in this family. We conclude that the approach described 
here seems to be a promising QSAR tool for molecular discovery of novel classes of 
antimalarial drugs which may meet the dual challenges posed by drug-resistant parasites 
and the rapid progression of malaria illness. 
 
1. BACKGROUND 
Malaria remains one of the most serious health threats in the world, affecting 300-400 
million people and claiming ca. 3 million lives each year.1,2 Due to the increasing 
prevalence of multidrug resistant of malaria parasites to standard chemotherapy, the 
discovery and use of nontraditional antimalarials with novel modes of action is becoming 
widespread.3-5 Knowing the complexity and cost of the process of drug discovery, the use 
of “rational” search methodologies is recommended. Consequently, medicinal chemists 
are called to developing more efficient strategies for the search of novel candidates to be 
assayed as antimalarial drugs. In this sense, computer-aided drug design approach 
emerges as a promising solution to this problematic.6-9 One of the major goals of such 
design strategy is the identification from large databases or libraries, of structural 
subsystems responsible for a specific biological activity. Using computational approaches 
based on discrimination functions, it is possible to classify active compounds from 
inactive ones and to predict, using clustering and similarity searching, the biological 
activity of new lead compounds.10-14

In this context, our research group has recently introduced a novel scheme to perform 
rational –in silico- molecular designs (or selection/identification of lead drug-like 
chemicals) and QSAR/QSPR studies, known as TOMOCOMD-CARDD (acronym of 
TOpological MOlecular COMputer Design-Computer Aided “Rational” Drug Design).15  
This method has been developed to generate molecular fingerprints based on the 
application of the discrete mathematics and linear algebra theory to chemistry. In this 
sense, atom, atom-type and total quadratic and linear molecular fingerprints have been 
defined in analogy to the quadratic and linear mathematical maps.16,17 This -in silico- 
method has been successfully applied to the prediction of several physical, 
physicochemical and chemical properties of organic compounds.16-19 In addition, 
TOMOCOMD-CARDD has been extended to consider three-dimensional features of 
small/medium-sized molecules based on the trigonometric 3D-chirality correction factor 
approach.20  
A later paper allowed the description of the significance-interpretation and the 
comparison to other molecular descriptors.17,18 The approach describes changes in the 
electronic distribution with the time throughout the molecular backbone. Specifically, the 
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features of the kth total and local quadratic and linear indices were illustrated by examples 
of various types of molecular structures, including chain length and branching as well as 
content of heteroatoms, and multiple bonds.17,18 Additionally, the linear independence of 
the atom-type quadratic and linear fingerprints to other 229 0D-3D “DRAGON” 
molecular descriptors was demonstrated. In this sense was concluded that local 
TOMOCOMD-CARDD fingerprints are independent indices which contain important 
structural information to be used in QSPR/QSAR and drug design studies.17,18  
The prediction of the pharmacokinetical properties of organic compounds is a problem 
that can also be addressed using this approach. In this sense, this method has been used to 
estimate the intestinal–epithelial transport of drug in human adenocarcinoma of colon cell 
line type 2 (Caco-2) culture of a heterogeneous series of drug-like compounds.21-23 The 
obtained results suggested that the TOMOCOMD-CARDD method was able of predicting 
the permeability values and it proved to be a good tool for studying the oral absorption of 
drug candidates during the drug development process. 
The TOMOCOMD-CARDD strategy has also been useful for the selection of novel 
subsystems of compounds having a desired property/activity. In this sense, it was 
successfully applied to the virtual (computational) screening of novel anthelmintic 
compounds, which were then synthesized and in vivo evaluated on F. Hepatica.24,25  
Studies for the fast-track discovery of novel paramphistomicides, antimalarial and 
antibacterial compounds were also conducted with this theoretical approach.26-29  

Later, promising results have been found in the modeling of the interaction between 
drugs and HIV Ψ-RNA packaging-region in the field of bioinformatics using the 
TOMOCOMD-CANAR (Computed-Aided Nucleic Acid Research) approach.30,31 Finally, 
an alternative formulation of our approach for structural characterization of proteins was 
carried out recently.32,33 This extended method [TOMOCOMD-CAMPS (Computed-
Aided Modelling in Protein Science)] was used to encompass protein stability studies –
specifically how alanine substitution mutation on Arc repressor wild-type protein affects 
protein stability– by means of a combination of protein linear or quadratic indices 
(macromolecular fingerprints) and statistical (linear and non-linear model) methods.32,33

In the present work, TOMOCOMD-CARDD strategy is used to find quantitative models 
which allow the discrimination of antimalarial compounds from inactive ones in a 
rational way using non-stochastic and stochastic quadratic indices. A virtual screening for 
the search of new leads compounds with a novel action mechanism is performed for the 
case of Ras FTPase inhibitors with antimalarial activity. Finally, we present the design, 
synthesis and in vitro evaluation against two Plasmodium falciparum strains of synthetic 
intermediates of quinolinic compounds, as starting point for the development of new non-
expensive antimalarials. 
 
2. THEORETICAL FRAMEWORK 
The theoretical scaffold of the TOMOCOMD-CARDD’s molecular descriptors family 
was split into two parts; one for describing the mathematical features of non-stochastic 
fingerprints and the other one related with the stochastic quadratic indices. 
 
2.1. Non-Stochastic Quadratic Fingerprints 
Implemented in the subprogram CARDD of the TOMOCOMD software, the atom, atom-
type and total non-stochastic quadratic fingerprints can be calculated from both, 
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molecular pseudograph’s atom adjacency matrix and molecular vector of small-to-
medium-sized organic compounds. The general principles of these quadratic indices have 
been explained in some detail elsewhere.14,18,20-23,25,26 However; an overview of this 
approach will be given.  
For a given molecule composed of n atoms, the “molecular vector” (X) is constructed and 
the kth total quadratic indices, qk(x) are calculated as quadratic forms as shown in Eq. 1, 
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where, n is the number of atoms in the molecule and x1,…,xn are the coordinates or 
components of the “molecular vector” (X) in a system of canonical basis vectors of ℜ n. 
The components of the molecular vector are numerical values, which can be considered 
as weights (atom-labels) for the vertices of the pseudograph. Certain atomic properties 
(electronegativity, atomic radii, etc) can be used with this propose. In this work, the 
Pauling electronegativities are selected as atom weights.34  
The coefficients kaij are the elements of the kth power of the symmetrical square matrix 
M(G) of the molecular pseudograph (G), and are defined as follows: 
aij  = Pij if i ≠ j and ∃ ek ∈ E (G)                                                                                                               (2)                                                 
     = Lii if i = j 
     = 0 otherwise 
where E(G) represents the set of edges of G. Pij is the number of edges (bonds) between 
vertices (atoms) vi  and  vj, and Lii is the number of loops in vi . 
 
Equation (1) for qk(x) can be written as the single matrix equation: 
qk(x) = Xt Mk X                                                                                                                (3) 
where X is a column vector (a nx1 matrix), Xt the transpose of X (a 1xn matrix) and Mk 
the kth power of the matrix M of the molecular pseudograph G (mathematical quadratic 
form’s matrix). 
In addition to total quadratic indices, computed for the whole-molecule, a local-fragment 
(atom and atom-type) formalisms can be developed. These descriptors are termed local 
quadratic indices, qkL(x).14,18,20-23,25,26  The definition of these descriptors is as follows: 
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where, m is the number of atoms of the fragment of interest and kaijL is the element of the 
row “i” and column “j” of the matrix Mk

L. This matrix is extracted from the Mk matrix 
and contains information referred to the vertices (atoms) of the specific molecular 
fragments and also of the molecular environment. The matrix Mk

L = [kaijL] with elements 
kaijL is defined as follows:  
kaijL = kaij if both vi and vj are atoms contained within the molecular fragment              (5)        
        = 1/2

 kaij if vi or vj is an atom contained within the molecular fragment but not  
            both  
        = 0 otherwise                                                                                                                   
These local analogues can also be expressed in matrix form by the expression: 
qkL(x) = Xt Mk

L X                                                                                                                                               (6) 
Notice that the above scheme follows the spirit of a Mulliken population analysis.35 Also 
note that for every partitioning of a molecule into Z molecular fragment there will be Z 
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local molecular fragment matrices. In this case, if a molecule is partitioned into Z 
molecular fragments, the matrix Mk can be partitioned into Z local matrices Mk

L, L = 1,... 
Z, and the kth power of matrix M is exactly the sum of the kth power of the local Z 
matrices. In this way, the total quadratic indices are the sum of the quadratic indices of 
the Z molecular fragments: 

qk(x) =                                                                                                               (7) )(
1

xq
Z

L
kL∑

=

Atom and atom-type quadratic fingerprints are specific cases of local quadratic indices. 
In this sense, the kth atom-type quadratic indices are calculated by adding the kth atom 
quadratic indices for all atoms of the same type in the molecule. 
In the atom-type quadratic indices formalism, each atom in the molecule is classified into 
an atom-type (fragment), such as heteroatoms, hydrogen bonding (H-bonding) to 
heteroatoms (O, N and S), halogen atoms, aliphatic carbon chain, aromatic atoms 
(aromatic rings), an so on. For all data sets, including those with a common molecular 
scaffold as well as those with diverse structure, the kth atom-type quadratic indices 
provide important information. 
 
2.2. Atom, Atom-type, and Total Stochastic Quadratic Fingerprints 
Notice that the mathematical quadratic form’s matrices, Mk, are graph-theoretical 
electronic-structure models, like the “extended Hückel” model. The M1 matrix considers 
all valence-bond electrons (σ - and π -networks) in one step, and their power k (k = 0, 1, 
2, 3…) can be considered as an interacting-electronic chemical-network model in steps k. 
This model can be seen as an intermediate one between the quantitative quantum-
mechanical Schrödinger equation and classical chemical bonding ideas.38  

Recently, our research group has also developed a new method based on the Markov 
chain theory, which has been successfully employed in QSPR and QSAR studies.13,37,39 

This approach also describes changes in the electron (stochastic) distribution and 
vibrational decay with time throughout the molecular backbone using Markov chain 
formalism.
The present approach is based on a simple model for the intramolecular (stochastic) 
movement of all valence-bond electrons. Let us consider a hypothetical situation in which 
a set of atoms is free in space at an arbitrary initial time (t0). In this time, the electrons are 
distributed around atomic nuclei. Alternatively, these electrons can be distributed around 
cores in discrete intervals of time tk. In this sense, the electron at an arbitrary atom i can 
move to other atoms at different discrete time periods tk (k = 0, 1, 2, 3…) throughout the 
chemical-bonding network. 
The kth stochastic molecular pseudograph’s atom adjacency matrix [Sk(G)] can be 
obtained from Mk. Here, Sk(G) = Sk = [ksij] is a squared table of order n (n = number of 
atoms), and the elements ksij are defined as follows: 
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where kaij are the elements of the kth power of M, and the SUM of the ith row of Mk are 
named the k-order vertex degree of atom i, . The ki

kδ th sij elements are the transition 
probabilities with which the electrons moving from atom i to j in the discrete time period 
tk (step-by-step). Notice that the kth elements sij takes into consideration the information of 
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the molecular topology in step k throughout the chemical-bonding (σ - and π -) network. 
For instance, the 2sij values can distinguish between hybrid states of atoms in bonds. In 
this sense, it can clearly be seen from Table 1 that electrons will have a higher probability 
of returning to the sp N atom p(N10) = 0.75 than to the sp2 N atom p(N6) = 0.33 in t2. A 
similar behavior can be observed among the different hybrid states of the C atoms in the 
molecule of 2-formyl-6-methyl-benzonitrile (see Table 1): Csp3 [p(C11) = 0.25]; Csp2 
[p(C2) = 0.625]; Csp2

arom [p(C3) = 0.285, p(C4) = 0.3, p(C5) = 0.33, p(C7) = 0.33, p(C8) = 
0.25]; and Csp [p(C9) = 0.769]. This is a logical result as the electronegativity scale of 
these hybrid states is taken into account. The kth total and local stochastic quadratic 
indices, sqk(x) are calculated in the same way that the non-stochastic quadratic indices, 
but using the kth stochastic molecular pseudograph’s atom adjacency matrix, Sk(G), as 
mathematical quadratic forms’ matrices. 
 
3. MATERIALS AND METHODS 
3.1. Computational Methods: TOMOCOMD-CARDD Approach 
TOMOCOMD is an interactive program for molecular design and bioinformatic 
research.15 It consists of four subprograms: (CARDD:Computed-Aided ‘Rational’ Drug 
Design, CAMPS:Computed-Aided Modeling in Protein Science, CANAR:Computed-
Aided Nucleic Acid Research and CABPD:Computed-Aided Bio-Polymers Docking). 
Each one of them allows drawing the structures (drawing mode) and calculating 
molecular 2D/3D (calculation mode) atom- and bond-based descriptors. In the present 
report, we outline salient features concerned with only the subprogram CARDD.   
The main steps for the application of this method in QSAR/QSPR and drug design can be 
briefly summarized as follows: 
1. Drowning the molecular pseudographs for each molecule of the data set, using the 

drawing mode. This procedure is performed by a selection of the active atomic 
symbol belonging to the different groups in the periodic table of the elements, 

2. Use of appropriate weights in order to differentiate the molecular atoms,  
3. Compute the total and local (atom and atom-type) quadratic indices of the molecular 

pseudograph’s atom adjacency matrix. They can be carried out in the software 
calculation mode, where you can select the atomic properties and the family 
descriptor previously to calculate the molecular indices. This software generates a 
table in which the rows correspond to the compounds, and columns correspond to the 
total and local quadratic indices or other family of molecular descriptors implemented 
in this program, 

4. Development of a QSPR/QSAR equation by using several multivariate analytical 
techniques, such as multilinear regression analysis (MRA), neural networks (NN), 
linear discrimination analysis (LDA), and so on. In this sense it is possible to find a 
quantitative relation between an activity A and the quadratic fingerprints having, for 
instance, the following appearance  
A = a0q0(x)  + a1q1(x) + a2q2(x) +….+ akqk(x) + c                                                   (10)                                
where A is the measured activity, qk(x) are the kth total quadratic indices, and the ak’s 
are the coefficients obtained by the linear regression analysis. 

5. Test of the robustness and predictive power of the QSPR/QSAR equation by using 
internal (leave-one-out and leave-group-out cross-validation) and external (using a 
test set and an external predicting set) validation techniques. 
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The following descriptors were calculated in this work:  
i) qk(x) and qk

H(x) are the kth total quadratic indices not considering and considering H-
atoms in the molecular pseudograph (G), respectively. 

ii) qkL(xE) and qkL
H(xE) are the kth local (atom-type = heteroatoms: S, N, O) quadratic 

indices not considering and considering H-atoms in the molecular pseudograph (G), 
correspondingly. These local descriptors are putative H-bonding acceptors. 

iii) qkL
H(xE-H) are the kth local (atom-type = H-atoms bonding to heteroatoms: S, N, O) 

quadratic indices considering H-atoms in the molecular pseudograph (G). These local 
descriptors are putative H-bonding donors. 

The kth stochastic total [sqk(x) and sqk
H(x)] and local [sqk(xE), sqk

H(xE) and sqk
H(xE-H)] 

quadratic indices were also computed. 
 
3.2. Data Set 
It is well known, that the quality of the classification models is highly dependent on the 
quality of the selected data set. The most critical aspect for constructing the training set is 
to warrant a great molecular diversity on it. Taking that into account, we selected a large 
data set of 1562 organic-chemicals having great structural variability; 597 of them are 
antimalarial agents2,7-9, 40-82and the other ones are non-antimalarials41,82 (965 compounds 
having other clinical uses, such as antivirals, sedative/hypnotics, diuretics, 
anticonvulsivants, hemostatics, oral hypoglycemics, antihypertensives, antihelminthics, 
anticancer compounds and so on. It is clear that the declaration of these compounds as 
“inactive” antimalarial per se does not guarantee antimalarial side-effects for some of 
these organic-chemical drugs that have been left undetected so far. This problem can be 
reflected in the results of classification for the series of inactive chemicals. 
On the other hand, the data set of active compounds was selected by considering 
representatives of most of the different structural patterns and action modes for the case 
of the antimalarial activity. For instance, it includes: 1) alkaloidal and synthetic 
quinoline-based antimalarial drugs which involve the blockage of the function of the food 
vacuole (4- and 8-aminoquinolines,9,70 peptide derivatives,52 dimeric quinolines47,49 and 
other compounds such as indolo[3,2-c]quinolines7 and methylene blue derivatives), 2) 
peptide (fluoromethyl ketone peptide derivatives) and nonpeptide (phenothiazines and 
chalcones) falcipain-cysteine protease inhibitors,42,45 3) peptide and nonpeptide inhibitors 
of malarials aspartyl protease plasmepsin II,48 4) agents interfering with Plasmodium 
Falciparum phospholipids metabolism (primary, secondary, tertiary amines and 
quaternary ammonium and bisammonium salts),69 5) antimalarials which have ability to 
inhibiting electron transport processes and respiratory systems by acting as ubiquinone 
antagonists (hydroxynaphthoquinones such as atovaquone),40 6) selective inhibitors of 
lactate dehydrogenase from malaria parasite (some derivatives of the sesquiterpene 8-
deoyhemigossylic acid),40 7) antimalarial chemicals which act by selectively inhibiting 
malarial dihydrofolate reductase-thymidylate synthase (pyrimethamine and it is 
analogs),8 8) antiparasitic agents affecting DNA topoisomerases (e.g., anticancer 
acridines)53 and 9) artemisinin-type antimalarials and other simple¸bicyclic and tetraciclic 
endoperoxides (incluiding lactone ring-open analogs the trioxane).2-5, 44, 51, 54-65,  66-68, 72 
These antimalarials endoperoxides appears to have a two-step mode of action. In the first 
step, the ‘artesmisinin’ compounds are activated by heme or molecular iron to produce 
free radicals and electrophilic (alkylating) intermediates. In the second step, these 
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reactive species react with and damage specific malarial membrane-associated proteins. 
Other compounds for which have not been found or defined a specific mode of action, 
but have been reported as antimalarial agents were also included.41,50, 82 Figure 1 shows a 
representative sample of such active compounds.  
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Figure 1. Random, but not exhaustive, sample of the molecular families of antimalarial 
agents studied here. 
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Later, two k-means cluster analyses (k-MCA) were performed for active and inactive 
series of compounds, which permitted us to split the dataset (1562 organic-chemicals) 
into training and predicting series.83,84 That is, all cases were processed using k-MCA in 
order to design training and predicting data series in a “rational” way. The main idea 
consists in carrying out a partition of either active or inactive series of chemicals in 
several statistically representative classes of compounds. Thence, one may select from 
the members of all these classes of training and predicting series. This procedure ensures 
that any chemical class (as determined by the clusters derived from k-MCA) will be 
represented in both compounds’ series.  
 
3.3. Chemometric Methods 
k-means cluster analysis (k-MCA). The statistical software package STATISTICA was 
used to develop the k-MCA.85 The number of members in each cluster and the standard 
deviation of the variables in the cluster (kept as low as possible) were taking into account, 
to have an acceptable statistical quality of data partition in clusters. We also made an 
inspection of the standard deviation (SS) between and within clusters, of the respective 
Fisher ratio and their p-level of significance, which was considered to be lower than 
0.05.83,84   
 
Linear Discriminant Analysis. In spite of several chemometric techniques to find good 
discriminant functions exist, such as SIMCA or neural networks, we select the linear 
discriminant analysis (LDA) in order to generate the classifier function on the basis of the 
simplicity of the method. The use of this statistical analysis will permit to classify new 
compounds as active or inactive ones from molecular descriptors.  
LDA was carried out with the STATISTICA software.85 The considered tolerance 
parameter (proportion of variance that is unique to the respective variable) was the 
default value for minimum acceptable tolerance, which is 0.01. Forward stepwise was 
fixed as the strategy for variable selection. The principle of parsimony (Occam's razor) 
was taken into account as strategy for model selection. In connection, we selected the 
model with a high statistical signification but having as few parameters (ak) as possible 
and maximizes the degrees of freedom. In the equation 10, ak are the coefficients of the 
classification function, determined by the least square method as implemented in LDA 
modulus of STATISTICA.85  
The quality of the models were determined by examining Wilks’ λ parameter (U-
statistic), square Mahalanobis distance (D2), Fisher ratio (F) and the corresponding p-
level (p(F)) as well as the percentage of good classification in the training and test sets. 
Models with a proportion between the number of cases and variables in the equation 
lower than 5 were rejected.  
The Wilks’ λ statistics is helpful to evaluating the total discrimination, and can take 
values between zero (perfect discrimination) and one (no discrimination). The D2 
indicates the separation of the respective groups.  
The biological activity (antibacterial in this case) was codified by a dummy variable 
“Class”. This variable indicates the presence of either an active compound (Class = 1) or 
an inactive compound (Class = –1). The classification of cases was performed by means 
of the posterior classification probabilities. This is the probability to which the respective 
case belongs to a particular group (active or inactive) and it is proportional to the 
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Mahalanobis distance. On completion, the posterior probability is the probability, based 
on our knowledge of the values of others variables, to which the respective case belongs 
to a particular group. By using the models, one compound can then be classified as 
active, if ∆P% > 0, being ∆P% = [P(Active) - P(Inactive)]x100 or as inactive otherwise. 
P(Active) and P(Inactive) are the probabilities with which the equations classify a 
compound as active and inactive, respectively.  
On the other hand, validation is a crucial aspect of any QSAR/QSPR modeling.86,87 One 
of the most popular validation criteria is the leave-one-out (LOO) cross-validation 
method (internal validation). This method systematically removes one data point at a time 
from the data set. A QSAR/QSPR model is then constructed based on this reduced data 
set and subsequently used to predict the removed data point. This procedure is repeated 
until a complete predictions set is obtained. Good results in this experiment can be 
considered as a proof of the high predictive ability of the models. However, this 
assumption is generally incorrect and it can be that it exists lack of correlation between 
the good LOO results and the high predictive ability of QSAR/QSPR models.86,87 Thus, 
the good behavior of models in an LOO procedure appears to be the necessary but not the 
sufficient condition for the models, to have a high predictive power. In this sense, 
Golbraikh and Tropsha87 emphasized that the predictive ability of a QSAR/QSPR model 
can be estimated by using only a test set (external validation) of compounds that were not 
used for building the model. For this reason, in order to assess the predictability of the 
obtained model, external validation procedures were carried out. In this sense, the 
statistical robustness and predictive power of the obtained model was assessed using a 
prediction (test) set.  
In the present work leave-group-out (LGO) cross-validation strategy was carried out.86 In 
this case, 10% of the data set was used as group size, i.e. groups including 10% of the 
training data set are left out and predicted for the model based on the remaining 90%. 
This process was carried out 10 times on 10 unique subsets. In this way, every 
observation was predicted once (in its group of left-out observations). The overall mean 
for this process (10% full leave-out cross-validation) was used as a good indication of 
robustness and stability of the obtained models. 
Finally, the calculation of percentages of global good classification (accuracy), 
sensibility, specificity (also known as ‘hit rate’), false positive rate (also known as ‘false 
alarm rate’) and Matthews correlation coefficient (MCC) in the training and test sets 
permits carrying out the assessment of the model.88 While the sensitivity is the probability 
of correctly predicting a positive example, the specificity is the probability that a positive 
prediction is correct. On the other hand, MCC quantifies the strength of the linear relation 
between the molecular descriptors and the classifications, and it may often provide a 
much more balanced evaluation of the prediction than, for instance, the percentages.88  

 
Orthogonalization of Descriptors. The orthogonalization process of molecular 
descriptors was introduced by Randić several years ago as a way to improve the statistical 
interpretation of the models by using interrelated indices.89-95 This process is an approach 
in which molecular descriptors are transformed in such a way that they do not mutually 
correlate. The main philosophy of this approach is to avoid the exclusion of descriptors 
on the basis of its collinearity with other variables previously included in the model. 
Both, the non-orthogonal descriptors and derived orthogonal descriptors, contain the 
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same information. In this sense the same statistical parameters of the QSAR models are 
obtained.89-95 It is known that the interrelatedness among the different descriptors can 
result in highly unstable regression coefficients, which makes it impossible to knowing 
the relative importance of an index and underestimates the utility of the regression 
coefficients in a model. However, in some cases strongly interrelated descriptors can 
enhance the quality of a model because the small fraction of a descriptor which is not 
reproduced by its strongly interrelated pair can provide positive contributions to the 
modeling. On the other hand, the coefficient of the QSAR model based on orthogonal 
descriptors are stable to the inclusion of novel descriptors, which permits to interpret the 
regression coefficients and evaluated the role of individual fingerprints to the QSAR 
model. 
The Randić method of orthogonalization has been described in detail in several 
publications.89-95 Thus, we will give only a general overview here. The first step in 
orthogonalizing the molecular descriptors included in models is to select the appropriate 
order of orthogonalization, which in this case is the order in which the variables were 
selected in the forward stepwise search procedure of the statistical analysis.95 The first 
variable (V1) is taken as the first orthogonal descriptors 1O(V1), and the second one (V2) 
is orthogonalized with respect to it [2O(V2)] by taking the residual of its correlation with 
1O(V1), which is that part of the descriptors V2 not reproduced by 1O(V1). Similarly, from 
the regression of V3 versus 1O(V1), the residual is the part of  V3  that is not reproduced 
by 1O(V1) and it is labeled 1O(V3). The orthogonal descriptor 3O(V3) is obtained by 
repeating this process in order to also make it orthogonal to 2O(V2). The process is 
repeated until all variables are completely orthogonalized, and the orthogonal variables 
are then used to obtain the new model. 
 
3.4. Chemistry 
IR spectra were recorded with a FTIR-BOMEM spectrometer using KBr disks for solid 
or NaCl cell for liquids (υ in cm-1). 1H NMR and 13C NMR spectra were recorded on a 
Bruker ADPX-300 (300 mHz) using CDCl3 as solvent. The calibration of spectra was 
carried out on TMS (internal 1H) and CDCl3 (13C) signals δ 1H (TMS) = 0; δ 13C (CDCl3) 
= 77.0. Chloroquine diphosphate was supplied by “Fundação para o Remédio Popular” 
(Brazil). All solvent were previously dried and purified before use, according to standards 
established in the literature.96, 97

 
3.5. Determination of in vitro Antiplasmodial Activity 
In vitro antiplasmodial evaluation was performed by using the susceptibility 
microtechnique.98 Two strains of Plasmodium falciparum, K1-chloroquine resistant, and 
Palo Alto-chloroquine sensitive, kindly provided by the WHO Registry of Standard 
Strains of Malaria Parasites at the University of Edinburgh, were continuously 
maintained in culture and used in these assays.99 The parasites freezing and thawing 
procedures were based on that described.100 The parasites were cultivated to 5% 
hematocrit in RPMI 1640 medium with 25 mM HEPES, 21 mM sodium bicarbonate, 370 
µM hypoxantine, 40 µg/ml gentamycin, and 10% human A+ or O+ serum provided by 
Fundação Pró-Sangue/Hemocentro de São Paulo. Washed human O+ erythrocytes were 
added to the culture as necessary. Synchronization was obtained by treatment with D-
sorbitol when the parasites were predominantly in the young trophozoite stage.101 Stock 
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solutions of the compounds (1 000 pmol/100 µL of ethanol) were used to prepare 
different concentrations (1, 2, 4, 6, 8, 16, 32 and 100 pmol/well) in aqueous solution. A 
stock solution of chloroquine diphosphate (1 000 pmol/100 µL in water) was used to 
prepare a series of concentrations (1, 2, 4, 6, 8, 16 and 32 pmol/well) to check the 
sensitivity of the isolates. Flat bottomed microtitre plates were dosed adding 100 µl of 
each concentration/well. The plates were dried at 37oC and stored at 4oC. An aliquot of 
100 µl of culture with a parasitemia between 0.5-1.0% and parasites in young trophozoite 
stage was added to each well of the microtitre plates. A control without compound and a 
sensitivity test to chloroquine were performed in parallel. Microplates were incubated in 
a candle jar with a gas mixture of 3% CO2, 5% O2, 92% N2, and maintained at 37oC for 
24-36 h. Giemsa-stained thick blood smears were prepared from each well when controls 
showed presence of schizonts by optical microscopy. The number of schizonts was 
counted per 200 asexual parasites and the tests were considered valid when this number 
was equal or superior to 10%. The minimum inhibitory concentration (MIC) of each 
compound was defined by the lowest concentration that completely inhibited the schizont 
maturation. 
 
 
4. RESULTS AND DISCUSSION 
 
4.1. Training and test sets design through k-means cluster analysis 
The first step in this study was the design of the training and predicting series to prevent 
non-random distribution of chemicals between the two sets. This was achieved using k-
MCA.83,84 This “rational” design of training and predicting series allowed us to design 
both sets that are representative of the entire “experimental universe”.  
We carried out first a k-MCA with active compounds and afterwards with inactive ones. 
A first k-MCA (I) split antimalarials in 20 clusters with 33, 18, 29, 29, 21, 59, 46, 57, 37, 
16, 9, 35, 24, 55, 17, 22, 25, 34, 13, and 18 members. On other hand, the inactive 
compound series was also partitioned into 20 clusters (k-MCA II) with 58, 26, 78, 26, 48, 
64, 60, 53, 80, 72, 46, 64, 41, 68, 58, 25, 4, 22, 23, and 49 members.  
Then, selection of the training and prediction sets was performed by taking, in a random 
way, compounds belonging to each cluster. From these 1562 compounds, 1120 were 
chosen at random to forming the training set, being 437 of them actives and 683 inactive 
ones. The great structural variability of the selected training data set makes it possible, 
not only the discovery of lead compounds with determined mechanisms of antimalarial 
activity, but also with novel modes of action. It will be well-illustrated in this paper in a 
virtual experiment for lead generation.  
The remaining subseries composed of 160 antimalarials and 282 compounds with 
different biological properties were prepared as test sets for the external cross-validation 
of the models. These compounds were never used in the development of the classification 
models. Figure 2 graphically illustrates the above-described procedure where two 
independent cluster analyses (one for active and the other for inactive chemiclas) were 
performed, to select a representative sample for the training and test sets. 
The kth total and atom-type non-stochastic quadratic indices were used, with all variables 
showing p-levels of <0.05 for the Fisher test. From the k-MCA, it can be concluded that 
the structural diversity of several up-to-date known antimalarials (as codified by 
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TOMOCOMD-CARDD descriptors) may be described at least by 20 statistically 
homogeneous clusters of chemicals. 
 
4.2. Developing Classification Functions 
The use of linear discriminant analysis (LDA) in rational drug design has been 
extensively used by different authors.10-14 Being the key of the present study, we 
developed two classification functions using topological descriptors computed with the 
TOMOCOMD-CARDD software.15 These linear models are given below together with 
statistical parameters: 
Class = -10.059 -0.08844q0(x) +0.07085q1(x) +0.18907q0

H(x) -0.0256q2
H(x)    

       +0.0528q2L(xE) +0.19849q1L
H(xE) -0.09913q2L

H(xE) -0.19816 q1L(xE-H)  
       +2.658x10-8q15L(xE-H)                                                                                             (11) 
N = 1120     λ = 0.32       D2 = 8.8       F(9, 1110) = 258.32          p<0.0001 
Class = -8.7734 +0.7734sq0

H(x) +0.84022sq1
H(x) -1.20567sq2

H(x)  
       +0.29627sq1L

H(xE) -0.3805sq3
H(x) -0.1833sq1L(xE) +2.3858sq0(xE-H) -1.0558sq1L(xE-H)  

       -1.1887 sq2L(xE-H) -0.7662sq3L(xE-H)                                                                        (12)   
N = 1120     λ = 0.35        D2 = 7.7       F(10,1109) = 203.11          p<0.0001 
where N is the number of compounds, λ is Wilks’ statistics, D2 is the squares of 
Mahalanobis distances, F is the Fisher ratio and p is the signification level.  
Model 11, which includes non-stochastic indices, classified correctly 94.73% of the 
compounds in the training dataset, misclassifying only 59 compounds of a total of 1120. 
The percentage of false actives in this data set was only 3.66%, i.e. 25 inactive 
compounds were classified as actives from 683 cases. Conversely, 34 compounds from 
the group of 437 actives were misclassified as inactive ones (7.78% of misclassification). 
The statistical analysis of model 12 showed similar results. In this case, the overall 
accuracy of the model was 93.13%. Only 4.98 % of misclassification for the inactive 
group was observed (34 inactive compounds were classified as active ones from a total of 
683). In this case 43 compounds from 437 (9.84%) were false inactives.  
The classification of all compounds in the complete training dataset provides some 
assessment of the goodness of fit of the models, but it does not provide a thorough 
criterion of how the models can predict the biological properties of new compounds. To 
assess such predictive power, the use of an external test set is essential. In this sense, the 
activity of the compounds in such set was predicted with the two obtained discrimination 
functions. The overall accuracy for this group was 93.89% (27/442) and 93.44% (29/442) 
using model 11 and 12, respectively.  Taking into account the number of compounds used 
in the external test set, we can see that the model 11 classifies correctly 97.16 % 
(274/282) of the inactives and 88.13% (141/160) of the actives, while model 12 classifies 
correctly 95.74 % (270/282) of the inactives and 89.38% (143/160) of the considered 
antimalarials. It can be seen that the number of misclassified inactive compounds is 
relative low for both models. This is a desirable condition to consider a model as 
adequate, taking into account that this number represents inactive compounds that will be 
sent to biological assays and in this way, loss of time and resources.12  
The results of global classification of compounds, in both training and external prediction 
sets, are shown in Table 1. This table also lists most parameters commonly parameters 
used in medical statistics (accuracy, sensitivity, specificity and false positive rate) and the 
Matthews correlation coefficient (MCC) for both obtained models.88 These models, Eqs. 
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11 and 12, showed a high MCC of 0.89 (0.87) and 0.86 (0.86) in training (test) sets, 
correspondingly.  
 
Table 1. Global Results of the Classification of Compounds in the Training and Test 
Sets. 

 Matthews Corr.
Coefficient 

 

Accuracy
‘QTotal’ 

(%) 
 

Sensitivity 
‘hit rate’ 

(%) 

Specificity 
(%) 

 

False positive rate 
‘false alarm rate’ 

(%) 
 

non-stochastic descriptors [Eq. (11)] 
Training set 0.889 94.73 92.2 94.2 3.6 
Test set 0.866 93.89 88.1 94.6 2.8 
stochastic descriptors [Eq. (12)] 
Training set 0.855 93.13 90.2 92.1 4.9 
Test set 0.857 93.44 89.4 92.3 4.2 

 
A second experiment, considering a leave-group-out (LGO) strategy, was carried out for 
both models as internal validation procedure.86 The overall mean of the correct 
classification for this process for Eq. 11 and Eq. 12 were 93.93% and 92.77%, 
respectively. For a 10% full leave-out cross-validation procedure, this level of cross-
validated classification is a good indication of robustness and stability of the obtained 
models. The results of the LGO procedure are shown in Table 2.  
 
Table 2. Predictivity based on the Use of Ten Randomly Selected Subsets (LGO cross-
validation) of LDA Models. 

% Global Good 
Classification 

 
Group 

Eq. 11 Eq. 12 
1 96.43 91.97 
2 95.54 94.64 
3 83.93 83.93 
4 91.07 92.86 
5 96.43 97.32 
6 93.75 92.86 
7 97.32 95.54 
8 98.21 99.11 
9 96.43 92.86 
10 90.18 86.60 
Overall mean 93.93 92.77 
Standard Deviation 4.39 4.58 
 
In summary, the calculation of percentages of good classification in the training and 
external data sets, and an internal cross-validation procedure permitted us to carry out the 
assessment of the models.  
A close inspection of the molecular descriptors included in both LDA-based QSAR 
models showed that several of these fingerprints are strongly interrelated to each other.  
In Table 3 we resume the results of the orthogonalization of molecular descriptors 
included in both models. In this case, the equations 11a and 12a correspond to the final 
models with the orthogonalized molecular indices (see Table 8). Here, we used the 
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symbols mO(qk(x)), where the superscript m expresses the order of importance of the 
variable (qk(x)) after a preliminary forward stepwise analysis and O means orthogonal.  
 
Table 3. Results of Randić’s Orthogonalization Analysis. 

  Orthogonal atom, atom-type and total non-stochastic quadratic indices 
1O(q0

H(x)) 2O(q2
H(x)) 3O(q15L(xE-H)) 4O(q1L(xE-H)) 5O(q1(x)) 6O(q0(x)) 7O(q2L

H(xE)) 8O(q2L(xE)) 9O(q1L
H(xE))

1 0 0 0 0 0 0 0 0 
 1 0 0 0 0 0 0 0 
  1 0 0 0 0 0 0 
   1 0 0 0 0 0 
    1 0 0 0 0 
     1 0 0 0 
      1 0 0 
       1 0 
        1 

LDA-based model derived with orthogonal atom, atom-type and total non-stochastic quadratic indices 
 
Class = -0.15069 +4.7535 1O(q0

H(x)) -3.80426 2O(q2
H(x)) +1.17955 3O(q15L(xE-H)) -2.366504O(q1L(xE-H))    

            +6.22277 5O(q1(x)) -15.73721 6O(q0(x)) -0.97037 7O(q2L
H(xE)) +11.35210 8O(q2L(xE)) 

            +12.44961 9O(q1L
H(xE))                                                                                                                                     (11.a) 

N = 1120   λ = 0.32   D2 = 3.9   F = 258.32   MCC = 0.89   Accuracy (%) = 94.73   %(+) = 96.34  %(-) = 92.22  p<0.0001 
 

Orthogonal atom, atom-type and total stochastic quadratic indices 
1O(sq0

H(x)) 2O(sq2
H(x)) 3O(sq1

H(x)) 4O(sq1L(xE-H)) 5O(sq1L
H(xE)) 6O(sq1L(xE)) 7O(sq3

H(xE-H)) 8O(sq0(xE-H)) 9O(sq3l(xE-H)) 10O(sq2L(xE-H))
1 0 0 0 0 0 0 0 0 0 
 1 0 0 0 0 0 0 0 0 
  1 0 0 0 0 0 0 0 
   1 0 0 0 0 0 0 
    1 0 0 0 0 0 
     1 0 0 0 0 
      1 0 0 0 
       1 0 0 
        1 0 
         1 

LDA-based model derived with orthogonal atom, atom-type and total stochastic quadratic indices 
 
Class = -0.5589 +3.9445 1O(sq0

H(x)) -54.2074 2O(sq2
H(x)) +40.3252 3O(sq1

H(x)) -0.8304 4O(sq1L(xE-H))  
             +1.7579  5O(sq1L

H(xE)) -4.7052 6O(sq1L(xE)) -34.7293 7O(sq3
H(x)) +3.9482 8O(sq0(xE-H) -5.7690 9O(sq3L(xE-H)  

              -8.4606 10O(sq2L(xE-H)                                                                                                                                      (12.a)  
N = 1120   λ = 0.35   D2 = 7.68   F= 203.11   MCC= 0.86   Accuracy (%) = 93.13   %(+) = 90.16   %(-)= 95.02  p<0.0001 

 
 
It must be highlighted here that the orthogonal descriptor-based models coincides with 
the collinear (i.e. ordinary) TOMOCOMD-CARDD descriptors-based models in all 
statistical parameter. That is to say, the statistical coefficients of LDA-QSARs λ, F, 
MCC, accuracy, %(+) [good classifications in the active group] and %(-) [good 
classifications in the inactive group] are the same whether we use a set of non-orthogonal 
descriptors or the corresponding set of orthogonal indices. This is not surprising because 
the latter are derived as a combination of the former and cannot have more information 
content than the former.89-91 Only the D2 values were different in both equation sets. This 
is because before carrying out the orthogonalization process, all the variables were 
standardized. In standardization, all values of selected variables (molecular descriptors) 
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were replaced by standardized values, which are computed as follows: Std. score = (raw 
score - mean)/Std. deviation. LDA algorithms at one point need to assess the distances 
between group’s centroids (or between cases and centroids), and obviously, when 
computing D2 distances, LDA need to decide on a scale. Because the different molecular 
fingerprints included here used entirely “different types of scales”, the data were 
standardized so that each variable has a mean 0 and a standard deviation of 1. This fact 
also makes interpretation of the coefficients, in the LDA-QSAR equations, possible. 
Therefore, mO(qk(x)) may be classified according to the distance k into short- (0-5), mid- 
(6-10), and long-range non-stochastic and stochastic quadratic indices. The information 
in Table 8 clearly shows that the major contribution to antimalarial activity is providing 
by short-range TOMOCOMD-CARDD descriptors. 
4.3. Comparative Analysis of the Obtained Structure-Based Classification Models 
for Describing the Antimalarial Activity of a Heterogeneous Series of Compounds 
In a previous paper, some of the present authors reported two classification models of 
antimalarial activity using the same training data set, but including non-stochastic and 
stochastic linear indices.27 With the aim to evaluate comparatively the ability of the non-
stochastic and stochastic quadratic indices to encode chemical information and the 
quality of the obtained LDA-based classification models, we performed an examination 
of some statistical parameters. Table 4 summarizes the mains results achieved with both 
TOMOCOMD-CARDD descriptors (based on both quadratic and linear maps).  
 
Table 4. Comparative Analysis of the Obtained Structure-Based Classification Models 
for Describing the Antimalarial Activity of a Heterogeneous Series of Compounds. 

Structure-Based Classification Models of Antimalarial Activity Models’ features 
to be compareda Eq. 11 Eq. 12 Eq. 13 Eq. 14 Eq. 15 Eq. 16 
N total 1562 1562 1562 1562 59 60 
N antimalarials 597 597 597 597 25 25 
Technique b LDA LDA LDA LDA LDA LDA 
Wilks’λ (U-statistics) 0.32 0.35 0.35 0.38 0.55 0.35 
F 258.32 203.11 261.61 202.73 9.83 8.88 
D2 8.8 7.7 7.92 6.90 - - 
p-level <0.0001 <0.0001 <0.0001 <0.0001 - - 
Training set 
N total 1120 1120 1120 1120 41 45 
N antimalarials 437 437 437 437 17 19 
Accuracy (%) 94.73 93.13 94.02 91.52 82.92 91.11  
MCCc 0.89 0.86 0.87 0.82 0.65 0.82 
Families of drugs d broader range broader range broader range  broader range low range low range 
Test set 
N total 442 442 442 442 18 15 
N antimalarials 160 160 160 160 8 6 
Predictability (%) 93.89 93.44 93.42 90.50 88.88 60.00  
MCCc 0.87 0.86 0.86 0.79 0.92 0.22 
Families of drugs d broader range broader range broader range broader range low range low range 
aEquations 11 and 12 are reported in this work and models 13 and 14 were obtained previously by the 
present authors using non-stochastic and stochastic linear indices.27 Equations 15 and 16 were reported by 
Gozalbez et al. 6 for two different studies: Eq. 15 was performed for the classification of antimalarial drugs 
and non-antiprotozoan drugs and, Eq. 16 for the discrimination between antimalarials and antiprotozoan 
drugs without antimalarial activity. bLDA refers to Linear discriminant analysis. cMatthews correlation 
coefficient.  dOnly largely represented families were considered.   
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Making use of the models obtained here (Eqs. 11 and 12) which includes non-stochastic 
and non-stochastic quadratic indices, 94.73% and 93.13% of compounds in the training 
dataset were correctly classified. As can be observed in Table 9, the models 13 and 14, 
obtained considering non-stochastic and stochastic linear indices,27 shows lower values 
for such parameters (accuracy of 94.02% (93.42%) and 91.52% (90.50%) in training 
(test) set, correspondingly. Also the models reported in this work shown a higher MCC 
than models obtained in our previous study. As can be seen, models develop with 
quadratic maps-based TOMOCOMD-CARDD descriptors (Eqs. 11 and 12) shows better 
parameters in all cases that models development with linear maps-based TOMOCOMD-
CARDD indices (Eqs. 13 and 14; see also equations 10 and 11 in reference 27). In this 
sense, we can conclude, that with the use of quadratic indices it is possible to codify 
useful chemical information and to obtain classification models comparable or even 
better than those obtained using analogous descriptors already reported. 
On the other hand, in the last decade other two –in silico- method have also been used to 
develop two structure-based classification models (Eqs. 15 and 16 in Table 9) of 
antimalarial activity, which give rise to a good discrimination of this activity in large and 
heterogeneous series of organic compounds.6 We also pretend to compare both 
approaches in order of showing the potentialities of our method. In this case, due to 
differences in the composition of experimental data used in carrying out the QSAR, it is 
not feasible to perform a “strict” comparison between the method reported previously6 
and the current approach. However, a relative comparison could be based on the kind of 
method used for deriving the QSAR and their statistical parameters, the number and 
diversity of chemical structural patterns contained in the data, the overall accuracy (%), 
Matthews correlation coefficient and the method which was used for the validation of the 
models. Table 9 also shows these chemometric coefficients for all approaches.  
The global good classification in the training set of quadratic maps-based TOMOCOMD-
CARDD models was higher than the two reported LDA equations (see Table 9). It is 
remarkable that the TOMOCOMD-CARDD models were derived from training series 
27.3(1120/41), and 24.8(1120/45) times bigger than the series used by Gozalbes et. al.6 In 
this sense, the overall accuracy in test sets of quadratic maps-based TOMOCOMD-
CARDD models was higher than the rest of two reported LDA equations (see Table 9).  
Another remarkable aspect is refereed to the spectrum of structural patterns considered in 
the studies under comparison. Without doubts, for the development of the TOMOCOMD-
CARDD models reported here, a broader diversity of antimalarial was considered. 

4.4. Virtual Screening of Ras FTase Inhibitors: An Experiment of Lead Generation  
One of the most important aspects of any quantitative structure-activity relationship 
model is its ability to predict the desired activity for new compounds not included in the 
training data set. Virtual screening of large databases considering the use of such models 
has emerged as an interesting alternative to high-throughput screening and an important 
drug-design tool.102-104 With the aim of testing the ability of our models to detecting new 
lead compounds with “unknown” structures, we carried out a simulated virtual screening 
of inhibitors of Farnesyltransferase (FTAse) that showed potent antimalarial activity in 
cell assays.105 No one compound with this kind of structure was included in the training 
data set, and in this sense this evaluation is equivalent to the discovery of new lead 
compounds using the developed models. In this simulation, 10 previously reported FTase 
inhibitors with potent antimalarial activity were evaluated with models 11 and 12 as 
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active/inactive ones. The results of the classification are shown in Table 5 and the 
molecular structures are illustrated in Scheme 1.  
 
Table 5. Results of the Virtual Screening Simulation of Peptidomimetic Inhibitors of 
Protein Farnesyltransferase (FTAse) that Showed Potent Antimalarial Activity in Cell 
Assays. 

Eq. 11 Eq. 12 

Compounda
P. falciparum 
Infected RBC 
ED50 (µg/mL)b

(∆P%)c
 

class (∆P%)c class 

a (FTI-2218) 10 88.40 + 88.05 + 
b (FTI-2217) 12 93.44 + 90.88 + 
c (FTI-2220) 5 97.13 + 92.63 + 
d (FTI-2238) 10 27.23 + 74.48 + 
e (FTI-2289) 13 -39.22 - 19.46 + 
f (FTI-2277) 3 69.39 + 90.44 + 
g (FTI-2278) 3 -25.08 - 26.14 + 
h (FTI-2279) 4 -61.68 - 38.75 + 
i (FTI-2291) 10 18.90 + 36.45 + 
j (FTI-2153) 2 21.28 + 58.45 + 
aCompounds a-j were taken from Ohkanda et al., 2001 (Ref. 105). bInhibition at 20µM, RBC = Red Blood 
Cell. cResults of the classification of compounds obtained from Eqs. 11 and 12, respectively.  
 
Scheme 1. Molecular Structure of Peptidomimetic Inhibitors of Protein 
Farnesyltransferase (FTAse) that Showed Potent Antimalarial Activity in Cell Assays. 
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As can be seen, both models classify correctly most of the 10 selected compounds. In the 
first case only 3 FTase inhibitors were classified as false inactives (70% of correct 
classification), while with model 12 the prediction has an overall accuracy of 100%. 
This result is in accordance with the character of the TOMOCOMD-CARDD approach, 
which permits to consider implicitly, through the calculation of non-stochastic and 
stochastic quadratic molecular descriptors, substructural and global features responsible 
for a specific activity. In this way, new lead compounds could be designed using the 
TOMOCOMD-CARDD method described in this paper. 
 
4.5. Experimental Results: Discovery of Novel Quinolinic Intermediaries as 
Antimalarial Compounds  
The aim of the present work is the development of discriminant functions for the rational 
design (or selection/identification) of new antimalarial compounds. As shown, we 
explored the ability of our classification models to find new active compounds carrying 
out an experiment of lead generation for the case of Ras FTPase inhibitors. These results 
encouraged us to developing a search of novel active compounds not described yet as 
antimalarials in the literature.  
In this sense, we also explore a large dataset of organic-chemicals through virtual 
screening in order to discover novel candidates for antimalarial drug-like compounds. A 
great number of the candidates to be assayed as antimalarial, detected with our models, 
were sent to biological assays and their presentation will be the objective of a 
forthcoming paper. Nevertheless, in this work we want to show some promissory 
outcomes of this computational screening, which can represent an important starting 
point to the design of novel antimalarials.   
It is well known, that the major of compounds used in the treatment of malaria are 
quinolinic derivatives such as quinine, chloroquine, mefloquine, halofantrine and 
primaquine. Acyclic β-enaminoesters and arylaminomethylenemalonates are synthetic 
intermediates of quinolinic compounds and can be achieved by economic and simple 
synthetic routes.106,107 On the other hand, there are not many researches related to the 
biological activity of enamine compounds. Taking that into account, we explored in our 
search the behavior of some acyclic β-enamino esters and arylaminomethylenemalonates. 
Three of these compounds were initially evaluated with models 11 and 12 and in order to 
corroborate the predictions, prepared with excellent yields by very economic and simple 
methods, and evaluated against two strains of Plasmodium falciparum. 
The acyclic β-enamino ester 1 were prepared by means of a nucleofilic addition of the 
aromatic amine to the keto group of the corresponding β-keto ester, using a previously 
described methodology.108 Arylaminometilenemalonates were synthesized by means of 
“one pot” process, starting from equimolar quantities of the corresponding aniline, ethyl 
malonate and ethyl orthoformate in the presence of catalytic amount of ZnCl2.109 Both 
general procedures are shown in Scheme 2. All the structures were confirmed by 
spectroscopic data analysis which is given as Supporting Information.  
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Scheme 2. Synthetic Procedure for the Synthesis of Quinolinic Intermediaries. 
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The results of the prediction process using models 11 and 12, as well as the minimum 
inhibitory concentration (MIC) for the three assayed compounds against K1 and Palo 
Alto strains are shown in Table 6.  
 
Table 6. Synthetic Intermediates of Quinolinic Compounds Evaluated in the Present 
Study, their Classification (∆P%) According to the TOMOCOMD-CARDD Approach, 
their Antimalarial Activity against two Malarial Strain and Antimalarial Activity of 
Chloroquine. 

Compound Structure ∆P%a class ∆P%b class 
MIC(pmol/well)

K1           Palo Alto 

1 
OEt

NHPh O

 
-93.09 - -78.83 - 100 100 

2 OEt

NHPh O

OEtO  

-63.02 - -1.25 - >100 >100 

3 
OEt

NH O

OEtO

EtOOC

 

31.21 + 89.02 + 32 16 

Chloroquine 

N

HN N

Cl  

77.93 + 77.96 + 8 4 

a, bResults of the classification of compounds obtained from Eqs. 11 and 12, correspondingly.  
 
The sensitivity control of each strain was carried out with chloroquine diphosphate. The 
MIC of chloroquine for sensitive strains is 5.7 pmol/well, i.e. strains with MIC above of 
this value are resistant to this compound.110 In our study, the determined value of the 
MIC for K1 strain was 8 pmol/well (µmol/L) and for Palo Alto strain 4 pmol/well (0.8 
µmol/L) confirming the sensitivity of the used strains. 
As expected, compound 1 did not show activity against K1 and Palo Alto strains. The 
inhibition of the schizont maturation was observed at 100 pmol/well. Compound 2 did 
not inhibit the growth of parasites at any of the assayed concentrations (MIC > 100 
pmol/well). Conversely, and in accordance with the predictions, the best results were 
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observed for compound 3, which showed a MIC = 32 pmol/well against K1 strain and a 
MIC = 16 pmol/well) for the case of Palo Alto strain.  
Taking into account that this is the first report of an arylaminomethylenemalonate with 
antimalarial activity, the result can be considered as a very promissory starting point for 
the future design and refinement of novel compounds with higher antimalarial activity. 
That is to say, compound 3 was tested at higher doses than chloroquine diphosphate 
(reference or control antimalarial drug), but this result leaves a door open to a virtual 
variation study of the structure of these compounds in order to improve their antimalarial 
activity. Other chemicals in the same family as compound 3, as well as other chemicals 
not in this family, were also predicted as antimalarials. The synthesis, characterization, 
and biological evaluation of these compounds are, however, beyond the scope of the 
present paper and will be discussed elsewhere. It is important to recall that the aim of this 
study is not to validate the model but to provide an experimental example of how to use 
the model for potential drug discovery. 
 
5. CONCLUDING REMARKS 
The introduction and use of graph theoretical descriptors for rational drug design has 
become an attractive tool for medicinal chemists. In this sense, the fusion of high 
throughput screening and classification-based QSAR models in an attempt to minimize 
the costs in terms of time, financial, human, and animal resources is becoming a viable 
alternative to massive screening. In this work, we have shown that TOMOCOMD-
CARDD approach can be applied to generate useful quantitative models for the 
classification of antimalarials. In flexible way, this method permits a quick in silico 
discovery of new candidates to lead compounds making use of a minimum of resources. 
Considering a training data set of compounds with a considerable structural variability, 
we reduce the degree of uncertainly for this process. The simulated virtual screening of 
Ras FTase inhibitors with antimalarial properties has proved the ability of our models for 
an adequate discrimination of new active compounds from inactive ones. The collected 
data of active compounds used in this study, results an important tool not only for the 
theoretical research, but for the general scientific work in this area. 
Using the developed models, a new lead candidate has been identified as a promising 
starting point for the design of new arylaminomethylenemalonates with potent 
antimalarial activity. Some works in this direction are at the moment in progress and will 
be published in a forthcoming paper. 
The interactive character of the TOMOCOMD-CARDD approach permits the future 
inclusion of new antimalarial drugs in the training data set and the generation of each 
time more “intelligent” models. In this sense, the new considered structural patterns will 
recognized for the models and a better discrimination of such kind of compounds will be 
obtained. However, this point is out of the general scope of the present work. 
 
Supporting Information Available: The complete list of compounds used in training 
and prediction sets, as well as their structures, posterior classification according to model 
11 and 12, chemistry and data analysis of the obtained chemicals is available free of 
charge via Internet at http://pubs.acs.org. 
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