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Abstract: A new pairwise similarity formula has been defined and used for molecular diversity assessment
based on a novel method. It is demonstrated here that the logarithmic relations of entropy and
indistinguishability give the expected diversity values which decrease with the increase in species
similarities. The calculation by Agrafiotis would be successful if the present pairwise similarity is used.
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1. Introduction

With the development of high throughput screening technology in recent years, the acquisition of molecular
and biomolecular samples by collection and combinatorial synthesis has now become the bottleneck in the
process of new drug discovery [1]. It suddenly occurred to us that a collection (or a library) of chemical
substances (compound samples) was no less precious than a collection (or a library) of chemical
information (chemistry books) [2] and the molecular diversity assessment became an urgent topic [1].

A recent article by Agrafiotis [3] on calculations using our method [4] demonstrated that a correct definition
of the pairwise similarity is the necessary condition to ensure expected results of the diversity assessment.
This calculation [3] did not give expected results, which is attributable to a improper definition of pairwise
similarity. This similarity scale [3] implies that the maximum distinguishable species is always only 2,
instead of N which is required in the original method [4] , for assessing diversity of a collection of N
chemical samples.

Our method [4] was based on a new theory (Figure 1) [5-7] constructed after rejection of Gibbs paradox.
In this paper, simple examples and a newly defined pairwise similarity formula suitable for assessing
molecular diversity has been given and used for species diversity calculation.
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Figure 1. Correlation of entropy of mixing with similarity.

2. The formula

For convenience, our method [4] is briefly summarized here. The diversity index (D) is defined as the ratio
of the information (I) and the maximum information ( ), as given by eq 1.

 (1)

This method is based on a new theory where entropy is clearly defined as information loss by the following
relation:

 (2)

In this equation, entropy is given by the familiar expression

 (3)

where  is the probability of the ith microstate with the property that

 (4)

while the maximum entropy is

 (5)

where w is the indistinguishability number which is the number of microstates of indistinguishable property.

The apparent indistinguishability number of microstates is defined as

 (6)

and eq 3 becomes

 (7)

which is the logarithmic relation of entropy and indistinguishability.

Practically, in order to record information, a system composed of N "unit devicesî is used. In computer
science or in our daily information recording as well, these "unit devicesî are N individuals (such as
symbols) assembled on a media such as a piece of paper. These individuals appear as M attributes, based
upon which it is said that the system has M species, such as the two species 0 and 1 in the binary system
[4].

Because the assessment of diversity of N chemical samples is our only concern here, the individual number



(N) and the maximum species number (M) are designated as the same: . This can be envisaged as N
holes in microplates used for high throughput screening containing N compound samples [9].

If these N compounds are all distinguishable, they can be used to record the maximum information as given
by eq 8. If red ink is used to represent 0 and blue ink 1, and two bottles of these different inks are used, 2
bits of information can be recorded if the number of individual (N) is 2. There will be 4 ( )
distinguishable microstates, see Figure 2). The maximum information is

 (8)

It is said that this is the maximum information because one can still intentionally use only a small part of
the available species to record only smaller amount of information. In eq 8, w is the number of
distinguishable microstates [8]:

 (9)

The corresponding entropy has the minimum value which is zero:

 (10)

This extreme case is illustrated in Figure 2 (N=2, w=4) and Figure 3 (N=3, w=27) [8].

Figure 2. A binary system of distinguishable species ( ) with N=2 which gives 4 microstates.

Figure 3. A trinary system of distinguishable species (M=3) with (N=3 (M=3) which gives 27 microstates.

Let all the N samples in the N bottles be the samples of extremely similar (or the same) property. Then
there will be still microstates (or  assemblages) constructed by the  times of different
combinatorial sequences of assembling to form solid structures. However, because they are all virtually
indistinguishable microstates, there is always the minimum information and the maximum entropy (eqs 11
and 12):

 (11)

 (12)

Suppose you have accidentally installed two bottles of red ink for a printer. Even though exactly the same
amount of effort is taken to prepare the 4 microstates, i.e., the four microstates are prepared in a same
way as that of Figure 2 by using inks from two individual bottles, there will be 4 ( ) indistinguishable
microstates (see Figure 4). Similarly, whether we factually take the same sample from one sample bottle or
different sample bottles, we always have w indistinguishable microstates, if they are virtually the same
compound in all the N bottles; see Figure 4 (N=2, w=4, if all species are factually 0) and Figure 5 (N=3,
w=27, if all species are B). The maximum microstate indistinguishability number is therefore

 (13)



These two extreme sets of distinguishable and indistinguishable samples which give minimum (zero) and
maximum entropy values respectively (eqs 10 and 12), already illustrated that our method of entropy
calculation is different from the classical statistical mechanics and the classical information theory (see also
Figures 1).

Figure 4. A binary system with N=2 which gives 4 indistinguishable microstates with the highest species
indistinguishability ( ).

Figure 5. A trinary system with (N=3) which gives 27 indistinguishable microstates because of the highest
species indistinguishability ( ). An example is shown in the last row of Table 1, where the property is

represented by the symbol "B".

Generally, suppose the N individuals used to construct microstates are only mutually similar to a certain
extent and they are neither distinguishable (eqs 8 and 10) nor indistinguishable (eqs 11 and 12). Instead of
using eq 1 directly, eq 14 is used to calculate entropy.

 (14)

The  pairwise similarities  in the table

 (15)

have values limited between 0 and 1 and are given by pairwise comparison among the N individuals
according to one and only one systematically followed standard of comparison for all the values  ( 

). Then a normalization factor c is required.

 (16)

It follows that

 (17)

Then eq 14 will give the same results as given by eqs 10 and 12 respectively under the two extreme
conditions.

We agree with Agrafiotis [3,10] that, in principle, the general equation (eq 3) should be directly used,
where w is simply replaced by . The obvious disadvantage of using eq 1 directly is that the sum runs
over all the microstates (see Figures 2-5). The calculation of these terms of enormous number , which



can be an astronomical figure, is impractical. Normally N is 100000, the size of a compound sample library
or sublibrary. In eq 14, the number is substantially reduced to totally  terms of .

Secondly, we are not really interested in using the chemical samples to record information by taking the
sample bottles as "unit devices". Therefore, we will not perform experiment or calculation to characterize
the chemical structural and other physicochemical properties of all these  microstates. Instead, we
measure (or calculate from the known structures) the properties of the N molecules, based on which the
pairwise similarities are to be easily calculated. This means that, instead of considering similarities and
probabilities among microstates, only  probabilities , , , etc., calculated from the pairwise
similarities among the N samples A, B, C, ..., etc., will be considered.

The first column of Table 1 showed several sets of three imaginary compound samples (A, B and C) plotted
against a uniform property scale as used by Agrafiotis [3]. If the properties of the samples are the same,
the points will coincide and these samples will be regarded as the same samples. If their distances are very
short and they are very close, they are regarded as very similar.

The probability  calculated from eq 17 means the probability of finding the jth individual as the ith
species. The diversity of these species is unknown and yet to be assessed; they are presumably similar to
each other to a certain extent [4]. Therefore, the comparisons are not performed between the N samples
and a set of a priori known set of distinguishable prototypes; the comparisons are performed among the N
samples themselves. The normalization factor c is required because these values are subject to the
constraint:

 (18)

Using of the logarithmic relations of entropy (eq 3) , here,

 (19)

it is easily found that the apparent species indistinguishability number . For the examples shown in
Figures 4 and 5, . Generally,

 (20)

Easily, the apparent species number  can be calculated.

 (21)

Using this method properly, the molecular diversity as expressed by the diversity index D and several
related parameters can be calculated. To compare the diversity of several selections of a sublibrary of
compounds from all available sources, and to acquire the same number of samples of the highest diversity
for many different screening purposes, the sublibrary of minimized entropy S is the choice.

3. Similarity Definition

Before calculating the molecular diversity of a library of N compound samples, the similarities for all the
mutual pairwise comparisons among all the N individuals should be clearly defined. Whether it is a proper
definition of similarities can be quickly checked first by the following criteria of the two extremes and by
using eq 14: (a) It should be able to give the definition of the N individuals of maximum apparent
distinguishability. The entropy of this system is the minimum which is zero (eq 10). (b) It should be able to
give the definition of the N individuals of minimum apparent distinguishability. This means there can be N
indistinguishable species. The entropy of this system is the maximum (eq 12).



As the reader can easily estimate from Table 1, if the pairwise similarities are estimated directly by either

 (22)

or

 (23)

given in the paper [3], the maximum number of distinguishable species is only 2, located at the two ends of
the property scale 0.00 and 1.00 respectively. The distance  between these two least similar species is
1.00. As shown in the original Figure 2 of Agrafiotis paper [3] of the entropies of various sets of
representative imaginary samples, the minimum entropy is not zero, which does not conform with the first
simple criterion (eq 10).

Note, eq (23) does not conform with the second criterion either: The minimum similarity value is 0.5,
instead of zero, which is normally the minimum value of a properly defined similarity scale [11,12]. The
minimum value corresponds to the largest distance which is 1 in this definition [3].

We propose that, instead of eqs 22, the following formula of pairwise similarity, which clearly conforms with
the simple criteria, is adopted:

 (24)

In this formula, the shortest distance, which defines that certain two species are distinguishable, is

 (25)

provided that the property scale range is [0, 1]. Again, remember that "distinguishability" means the least
similarity. If the distance is shorter than this (eq 25), the two considered samples are similar. If they
coincide, they are indistinguishable samples or the same samples.

According to eq 24, it is easily verified that the samples most uniformly distributed on the property scale
have the highest diversity ( ,  and ), where all species are distinguishable, in contrast to a
collection of samples as shown in the last row of Table 1, which has the lowest diversity and the highest
indistinguishability ( ,  and ). For the latter case, if the property of these three samples
are represented by a symbol B, the 27 indistinguishable microstates are those listed in Figure 5.

The calculation results of several representative sets of samples by using eq 24 for pairwise similarity
calculation are listed in Table 1.

Table 1. Calculation of diversity based on the similarity formula eq 24. Eqs 14, 19, 19, 21, 2 and 1 are
used for calculating entropy (S), apparent indistinguishability number of microstates ( ), apparent
indistinguishability number of species ( ), the apparent number of species ( ), information (I) and
diversity index (D), respectively.

Sample
Properties Pairwise Similarity Table Probability

Table S    I D 

   
0.00 1.00 1.00 3.00 3.30 1.00 



   
1.39 4.00 1.59 1.89 1.91 0.58 

   
1.39 4.00 1.59 1.89 1.91 0.58 

   
2.31 10.1 2.16 1.39 0.99 0.30 

   
3.30 27.0 3.00 1.00 0.00 0.00 

5. Conclusion

This paper has described the application of a new theory based on the rejection of Gibbs paradox of
entropy of mixing and assembling for calculating species diversity. A similarity scale used by Agrafiotis is
modified here. As we have demonstrated, if the pairwise similarity is properly defined following very simple
criteria, calculations will generate satisfactory and expected results.

Finally, the widespread conceptual confusion between information loss of dynamic mixing and information
loss in static assembling, even though has been considered by us [5-7, 13-15], will be discussed in more
detail elsewhere.
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During 1-30 September 1997, all comments on this poster should be sent by e-mail to
ecsoc@listserv.arizona.edu with F0004 as the message subject of your e-mail. After the conference, please
send all the comments and reprints requests to the author(s).
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