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Abstract
A method is proposed, and shown to be able to find active compounds
in a Large Database by iterative selection/screening cycles. The method
is derived from genetic algorithms. Starting from an initial small parent
population the next compounds to screen are selected by similarity
search based on the structural features of two high rating parents. The
performance of the method is demonstrated using 20000 compounds
with biological data from the NCI1 database.
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Finding Biologically Active
Compounds in Large Databases
Given a large database with compounds that are available in-house or
through an external supplier many agrochemical and pharmaceutical
companies face the problem of how to select compounds for screening.
The major goal is to find the active compounds as fast as possible.

There are several approaches one could imagine to find active
compounds in large databases. Random screening is the conceptually
most easy and therefore many pharmaceutical and agrochemical
companies have set up large random screening programs2. The
opposite approach is given by sophisticated modeling techniques and
3D database searching based on rational pharmacophore models3.

Much research is now ongoing in the field of diversity selection, where
the aim is not directly to find biological active compounds but to scan
the given chemical space using as few as possible compounds. Since
the aim of diversity selection is to find diverse compounds diversity
selection will not yield more active compounds but it will yield more
diverse active compounds. Statistically, diversity selection will not give
a higher number of hits as shown in figure 1.



Figure 1. Schematic depiction of selection by diversity design, where compounds are chosen to cover the space evenly (left) and
randomly (right). The red spots mark areas where highly active compounds may be found. The yellow spots mark areas mark where
moderately active compounds may be found.

On the other hand diversity selection offers two advantages over
random selection:

Since diversity selection cover the chemical space evenly, two sets
selected by diversity out of the same database will cover the same
classes of compounds. On the other hand different random
selections might differ widely in the number and kind of chemical
classes covered. Even worse, if large clusters are present, a random
selection will tend to be biased towards selecting compounds out of
these clusters.
By using diversity techniques the chances are increased that active
compounds from all or at least most activity classes may be found.

Lead Finding as an
Optimization Process

A closer look at the lead finding process in agrochemical and
pharmaceutical companies reveals that it can be regarded as an
iterative optimization process (figure 2). Starting from some weakly



active compound modifications are made to the chemical structure to
improve activity. This modifications are usually driven by intuition,
QSAR approaches or molecular modeling. The newly synthesized
compound are screened, and then might be used themselves again as
the basis for further modifications until sufficient activity is found. This
process has to be iterative since the exact relation between the
chemical structure and activity is unknown.

Figure 2. Iterative optimization of activity.

However, optimization problems do not only exist in chemistry, but are
common in any scientific or technical field. Therefore many
computational algorithm are available to solve optimization problems4.
The optimization problem is usually formulated as follows:

Given a function f(x) find those x where f(x) has a maximum while
x is in a given range.

The lead finding problem may be formulated in analogy:

Given a biological screen f for compounds x, find the compounds
with highest activity in a given database of available compounds.

Genetic algorithm have proven to be able to solve hard optimization
5



problems , therefore we have implemented an optimization algorithm
derived from genetic algorithms6.

Genetic Algorithm
Genetic algorithms try to emulate the way in which nature optimizes its
species through evolution. Given a set of individuals, those with higher
fitness are allowed to mate more often and therefore to produce more
offspring. To produce offspring, the chromosomes of two individuals
are combined in the crossover step. As in nature, in addition to
crossover the chromosome of the offspring may be modified by
mutation. The new chromosome defines a new member for the next
iteration. The computational deployment of genetic algorithms is
strongly dependent on the possibility to create something which is
analogous to biological chromosomes. In standard genetic algorithms,
bit strings are used as chromosomes. If, for example, the highest value
of the function:

in the interval -1 - 2 is to be found, x has to be represented as a bit
string. This can be accomplished by mapping the desired range (-1 - 2)
onto a 32 bit integer value which ranges from 0 to 4294967296. The
value of x may be derived from xi by:

which yields values between -1 and 2 as required.

A standard genetic algorithm would use a procedure like the following:



Fig 3. Standard genetic algorithm

1. Select an initial random population of e.g. 40 members:
bin(xi) xi x f(x)

1 000000101011101110101111100110 22927334 -0.98398 0.90954
2 110010100001110011111100010111 847724311 -0.407871 0.49450
3 111010101101100010101110001001 2058759049 0.43801 1.10418
4 ....

2. Select n random pairs of parents from the n members of the
population with highest fitness (largest f(x)). E.g. number 1 and 3.

3. Crossover the chromosomes (xi) of the selected pairs at a random
position. E.g.

110010100001110011111100010111 and 111010101101100010101110001001

yield 110010100001110011111110001001

4. Allow for a limited number of random mutations. E.g.
5. 110010100001110011111110001001 yields

110000100001110011111010001001
6. Calculate the fitness f(x) for the new children and add them to the

population.
7. Repeat steps 2 to 5 until the maximum value of f(x) is found.

Genetic algorithms work because the chromosomes of high-rating
individuals have higher chance to survive and because the features of



high rating individuals are combined to give even better individuals in
the next generation. Mutations allow for the exploration of unknown
regions in the search space.

Modified Genetic Algorithm for
Lead Finding

The procedure described above should also lend itself to lead finding.
In much the same way as in conventional lead optimization, starting
from a small number of screened compounds, new ones should be
screened in order to find more active compounds. The key problem in
using a genetic algorithm to optimize the outcome of a biological
screen is the bit string representation of a chemical structure. A string
containing the flask number of reagents for a virtual combinatorial
library has been used as chromosome for a genetic algorithm by Weber
et. al.7. The genetic algorithm converged quickly to find active
compounds.

On the other hand most chemical information systems already contain a
bit string coding for structures (Fig 4). These were introduced to speed
up substructure searches and to allow for similarity searching2. For our
work we have chosen to use fingerprints as created with the daylight
toolkits. A "1" within a fingerprint codes for the presence of on or more
structural features while a "0" shows that the corresponding fragments
are absent.

CN COC CC CO CCC C CCN O N CCO

0 0 1 1 0 1 0 1 0 1

Fig. 4. Fingerprint of ethanol (simplified).

http://www.daylight.com/
http://www.daylight.com/


This molecular fingerprints are an ideal representation which can be
used in the crossover step of a genetic algorithm (Fig 5).

Fig 5. Fingerprint crossover.

The crossover fingerprint encodes features from both parents.
However, it will usually not correspond directly to a chemical structure
from the database. Rather, the database molecule which corresponds
most closely to the combination of both parents can be found by a
simple similarity search through the database.

A Few Words on Similarity
One of the most often used similarity measures based on fingerprints is
the Tanimoto coefficient2:

0.79
1 2

Tanimoto(1,2)=0.79

The Tanimoto coefficient varies between 0, both structures have no
structural feature in common, and 1 both structure contain exactly the
same structural features.



In addition we have implemented an substructure similarity measure:

1 2
Substructure Sim(1,2)=0.85

The substructure similarity also varies between 0 an 1. But the
substructure similarity measures to which extent 1 is a substructure
from 2, yielding 1.0 if 1 is an exact substructure from 2.

Validation
To validate the method we have simulated the iterative
screening/selection cycle using compounds and data from the NCI1
database. The non-small cell lung cancer results using the A549/ATTC
cell line, have been chosen because of the large number of screened
compounds. The GI50 values given in the database are corrected IC50
values. As can be seen in figure 6 more than half of the compounds
measured have an -log(GI50) value of exactly 4.0. Only 4 compounds
have -log(GI50) > 11.75.



Figure 6. Distribution of the negative logarithm of the GI50 value of the inhibition of non small cell lung cancer for 19719
compounds, as given in the NCI database. The values range from -4 (inactive) to 13.0 (active). The range between 4 and 13 was
divided in 6 equally spaced groups. More than half of the compounds have an activity of 4.0.

The aim of the optimization should be to find the compounds of the
active groups in as few as possible steps. The procedure was as
follows:

Twenty compounds were selected randomly out of the set of
compounds with log(GI50) = 4.0 and added to the set of screened
compounds with known activity.
The following steps where then iterated 100 times:
Take 20 most active compounds out of the set with known activity
to build the parent set.
Add 2 random compounds from the database to the parent set
(mutation). This allows for the exploration of more diverse regions
of the chemical space.
Create 20 crossover fingerprints by randomly selecting 20 pairs
from the parent set.
For each crossover fingerprint lookup the most similar compound in
the set of unscreened compounds and add it to the set of screened
compounds.
If a compound was included more than 10 times in a parent set do
not use it again.



Results
The results using the substructure similarity are given in figure 7.
Figure 7 shows a typical run. Several runs might differ by the initial
seed to the pseudo random number generator, or by the choice of the
first parent generation. However the performance in all our
experiments has been comparable to that shown in figure 7. Using a
random screening approach one would expect that all lines collapse
onto the green line which shows the percentage of compounds
screened. As can be seen the algorithm performs much better than
random screening. After screening only about 5% of the database all
compounds from the highest active set were found and about 70% of
the compounds with log(GI50) > 10.2.

Inspection of the structures from the most active set given on the left
shows that they do not fall into one single class. Moreover they are
quite different from each other. They may be classified into two pairs
one containing two macrocyclic compounds. Thus the method seems to
be able to find different maxima in the activity space.



Figure 7. Simulated lead finding using the modified genetic algorithm and substructure similarity. The percentage of compounds
found from most active sets of compounds in figure 6 is plotted against the percentage of compounds screened. Using a random
screening approach one would expect that all lines collapse onto the green line which shows the percentage of compounds
screened.

The results using the Tanimoto similarity are given in figure 8.
Although the results are still two to three times better than random
screening, the substructure similarity is much better. This might be
understood if one assumes that the presence of some structural
features is essential for activity. Additional structural features in most
cases will not harm the activity unless they are interfering with the
receptor. Therefore additional structural feature should not be weighted
as much as absent structural features when looking for active
compounds. This is exactly what happens when the substructure
similarity is used.



Figure 8. Simulated lead finding using the modified genetic algorithm and Tanimoto similarity.

Conclusions
By using optimization techniques based on structural similarity it is
possible to find active compounds out of large databases, while
screening only a small fraction of the complete database. An algorithm
derived from genetic algorithms was proposed and its performance
analyzed by simulating the selection/screening iterations using data
from the National Cancer Institute1. After screening only about 5% of
the compounds all compounds out of the most active group where
found. While the crossover of two fingerprints combines features from
two previously active compounds, the addition of mutations assures
that unknown parts of the chemical space are explored. Therefore the
proposed algorithm can find active compounds from several activity
groups.



[1] NCI database: http://epnws1.ncifcrf.gov:2345/,
N. Weinstein, T. G. Myers, P. M. O`Connor, S. H. Friend, A. J. Fornance, K. W. Kohn, T. Fojo, S. E. Bates,
L. V. Rubinstein, N. L. Anderson, J. K. Buolamwini, W. W. van Osdol, A. P. Monks, D. A. Scudiero, E. A.
Sausville, D. W. Zaharevitz, B. Bunow, V. N. Viswanadhan, G. S. Johnson, R. E. Wittes, K. D. Paull, Science
1997, 275, 343

[2] John P. Devlin, http://www.awod.com/netsci/Science/Combichem/feature14.html

[3] G. M. Downs, P. Willet in Reviews in Computational Chemistry, K. Lipkowitz, D. B. Royd (Editors), VCH
Publishers Inc. New York 1996, 1-66

[4] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, The Art of
Scientific Computing, Second Edition, Cambridge University Press 1992

[5] Z. Michalewicz, Genetic + Data Structures = Evolution Programs, Springer Verlag Berlin Heidelberg New
York 1996

[6] A. Gobbi, D. Poppinger, B. Rohde J. Chem. Inf. Sci. submitted for publication.

[7] L. Weber, S. Wallbaum, C. Broger, K. Gubernator Angew. Chem. 1995, 107, 2452

Comments

During 1-30 September 1997, all comments on this poster should be sent by e-mail to
ecsoc@listserv.arizona.edu with F0008 as the message subject of your e-mail. After the conference, please
send all the comments and reprints requests to the author(s).
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