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Electrostatically comb-driven micromirrors 

• Air-packaged 

• Working frequency 19 343 Hz 

• Made by STMicroelectronics 

 

 

 

 

• Large tilting angle ±12 ͦ 

 

2 



Ramin Mirzazadeh 

Engineering motivation 

• Out-of–plane oscillation of combfingers 

• Large angle oscillation 

• What happens to the fluid when the structure has complex geometry and 

motion? 

• 3D CFD 
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Parameter Value 

Mirror diameter 1060 μm 

Spring length 579.5 μm 

Spring width 44 μm 

Finger length 170 μm 

Finger width 6 μm 

Finger span 760 μm 

Finger gap 3 μm 

Number of fingers 29 

Thickness of layout 50 μm 

Substrate depth 450 μm 
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Engineering motivation 4 

• Damping behavior is important in 

microscales (surface forces) 

• Mass=1.81·10-7 kg 

• Moment of inertia= 9.384·10-14 kg m2 

 

• The energy dissipation is expected to 

be lower than the one for the small 

oscillation 

• Experiments show no reduction in the 

energy dissipation 
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Previous works 

• Howe, Pisano et al (JMEMS, 1993) 

• 1D Stokes flow 

• Zhang and Tang (IEEE on MEMS, 1994) 

• The combfinger effect in experiments 

• Ye, Werner, White et al (JMEMS, 2003) 

• 3D Stokes solver (3D BEM), Stick BC 

• Sudipto and Aluru (JMM, 2006) 

• Coupled model, 2D compressible N_V 

• Frangi et al (J. numerical methods Eng., 2006, Sensors and actuators 

A,2009) 

• Fast multipole boundary element, Slip BC 

• Boundary Integral Equation,  Free molecule regime 

• Braghin et al (NoD., 2008) 

• 3D Incompressible N_V, constant speed 
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Damping mechanisms in micromirrors 6 

Shear damping 

Drag damping  

Squeeze film damping 
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Fluid-mechanical dissipation, Flow model 

• Reynolds number  ≪ 1 ,   Laminar flow 

• Mach number ≪ 1,    Incompressible flow 

• Knudsen number ≈ 0.01,   Continuum method 
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Mean free path of 

air molecules 

Characteristic length 

Kn               ► 0.01 0.1 10 

Regime     ► Continuum Slip Transition Free-molecule 

*G.E. Karniadakis, A. Beskok, Micro Flows, Fundamentals and Simulation, 

Springer, New York, 2002 
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Slip boundary condition- implementation in 

CFX 

• ANSYS CFX  

• User defined BC 

• Error: 1.5% 
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Shear Damping 9 

A A 

Section A-A 

Simulation cell 
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Validation for small displacements 

• Shear damping, small oscillation 

• Couette flow model 

• 2% error 
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Linear behavior of flow in small oscillations 

• Linear behavior 

• Jumps when velocity is zero 

11 

     Ratio between magnitude of shear force and velocity (Ns/m) 
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Validation for squeeze film damping-

benchmark* 

• Rotational resonator- perforation cell 

• Resonance frequency: 4550 Hz 

• Reported overall force on the unit cell for unit velocity: 1.492·10-7 N 
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 * A. Frangi et al,  Sensors  and  
actuators  A:   physical, 2009. 
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7 % 

Mesh size and input velocity order effect 13 

11 % 
Lowering the 

velocity amplitude 
Using finer mesh 
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Remeshing 

• Fortran subroutine  

• Dynamic remeshing procedure 

 If mesh quality decays critically  

 Extracting the new geometry 

parameters 

 Update the geometry 

 Mesh the new geometry 

 Import the new mesh to the solver 

 Set the initial condition based on the 

previous solution step 

 

 Mesh quality index: 

Minimum orthgonality angle 
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Rotational- large oscillation 15 

• Mesh quality degradation and remeshing process 

occurs repeatedly 
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Rotational- large oscillation 16 

• Air velocity vectors evolving during large oscillations 
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Rotational- large oscillation 

• The finite size of plates results in having 

complex flow during large oscillations  

• Small fluctuations at each remeshing 
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𝑇𝜏 =  𝑟  × 𝜏  𝑑𝐴 

𝐴
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Dissipation in the mirror plate 18 

5.7% 

Total  torque 

Torque on top 

Torque on Bottom 

Angular velocity 

𝑇 𝑝 =  𝑟 × 𝑝 𝑛  𝑑𝐴

𝐴

 

Negligible squeeze 

effect 
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Optical test setup 
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Quality factor 

Eloss(J) Est(J) Quality factor 

Comb fingers 1.78e-8 - 1 074 

Mirror plate 1.18e-8 - 1 618 

Total 2.96e-8 3.04e-6 645 
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Model modifications: Including 

comb fingers at the drag damping 

and slip BC 

𝑄𝑡𝑜𝑡𝑎𝑙 =
1

1
𝑄𝑐𝑜𝑚𝑏

+
1

𝑄𝑝𝑙𝑎𝑡𝑒

 

𝐻𝐵𝑃 →  𝑄𝑒𝑥𝑝 = 623 

𝑄 = 2𝜋
𝐸𝑠𝑡
𝐸𝑙𝑜𝑠𝑠
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Remarks 

• At large oscillations the end-effect/finite size has an important role, 

which contributes in large energy dissipations 

• Individual quality factors for different damping mechanisms have been 

obtained and the overall quality factor shows good agreement with the 

experimental one  

 

 

 

• Analysis of the electrostatic field at the comb fingers to characterize the 

system excitation. This would give a complete model for the dynamics of  

the micromirror 
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