### A consumer level 3D object scanning device using Kinect for web-based C2C business



Geoffrey Poon, Yu Yin Yeung and Wai-Man Pang Caritas Institute of Higher Education

### Introduction

Internet shopping is popular

### C2C / auction websites

- E-bay and Taobao
- Existing C2C sites
  - Textural
  - 2D still images



#### E.g. An auction of a camera Several pictures are acquired for the camera



### **Project Goal**

- Use latest 3D technology
  - Understand better the condition of auction product
- Problems
  - Affordable solution of 3D content creation
  - 3D visualization of product on webbased environment



## **Project Goal**

- 3D scanner with low cost camera
- Kinect
  - Around USD\$150



- Provide depth data robustly
- Fast and simple scanning steps
- Automatic 3D reconstruction

### **3D Reconstruction System**

- To create 3D model from set of 2D images from the real world
- A common approach:
  - Reconstructed from stereo views
  - Similar to how human eyes and brain works





### **3D Reconstruction using Kinect**

#### ReconstructME



- 3D model without texture;
- Caused the capture lost easily.

### **3D Reconstruction using Kinect**

- KinectFusion (Microsoft)
  - Colored 3D model from reconstruction;

- Depends heavily on GPU
- 3D Scan 2.0
  - Lower quality Colored 3D model from reconstruction;
  - Support linux only.



### **Overview of Our Approach**

- Three major steps in 3D model creation
  - Capturing
  - Point Cloud Processing
    - Background removal & orientation matching
  - Point Cloud Registration



## **Model Capturing**

- OpenNI SDK to obtain RGBD-data from Kinect
  - Point clouds are formed from RGBD-data
- Multiple frames from different views







### **Post-processing**

• Our first problem:

#### How to remove the background/noise ?



### **Post-processing**

#### Second problem:

# How to align point clouds captured at different view point ?



### **Processing Point Cloud : Views Alignment**

- To align points from different views
  - Marker-based detection
    - Fast response
  - ARToolKit is used
    - Markers is extracted from image captured
    - Estimate orientations from different views
    - Match the orientations of from different views



#### **Processing Point Cloud : Views Alignment**

#### Result after alignment using markers



#### **Processing Point Cloud: Background Removal**

Markers are used to define interested region

- Points outside are removed
- Left points within the markers.
- 90% of background can be removed

#### **Processing Point Cloud: Background Removal**

Unwanted background is removed



#### **Processing Point Cloud**

- However, a closer look...
- View alignment is still not satisfactory !
  - Large error exists in marker-based detection





- Refine alignment of different views
- ICP (Iterative Closest Point)
  - Initial alignment
    - Transformation between frames
  - Iterative process



- Pure ICP is slow
- Reduce number of points
  - Down-sampling using voxel-grid
- Create a better initial alignment
  - Matching of feature points



### **Down-sampling**

- First step in the point cloud registration
  - Improve speed on point cloud alignment
  - Obtain the better features value on huge point cloud
- Voxel-grid down-sampling
  - Dividing the point cloud into the grids
  - Use centroid of points in each grid as the sample



### **Computation of Initial Alignment**

- To extract key points
  - Base on large curvature value
  - Estimate using Principal Component Analysis (PCA)
    - involves neighboring points



### **Computation of Initial Alignment**

- Matching the corresponding feature key points between 2 frames
  - Fast Point Feature Histogram (FPFH) as the feature descriptor
  - KdTree(KNN search implementation with OpenCV)
- FPFH





### **Computation of Initial Alignment**

- Estimated the transformation between key pairs from 2 frames
  - Incorrect point pairs may be form by taking the 1 nearest point.



Target frame

Model frame

- Taking the best samples using RANSAC
  - Take 3 sample points for each iteration,
  - Form the point pairs by Kdtree,
  - Estimate the Transformation by SVD and apply it,
  - The 3 pairs with the minimum error is the best model.
- Compute the Transformation on best model by SVD

- Refine the alignment
  - Iterative Closet Point (ICP)
    - Extract the good key points from initial guess
    - Matching the corresponding key points between 2 frames (using XYZ)
    - Estimated the transformation between key pairs from 2 frames
      - Outlier Removal using RANSAC
      - SVD
    - Iterative until reach the acceptable error

The alignment is refined after using point cloud registration





### **3D Point Cloud**

 After the registration, the 3D point cloud model can be upload to web host by using cURL



### **3D Point Cloud Format**

.ASC files for point cloud storage

For example:

123.000534.123534.143255255123One point54.00067.12312.14310203054.00067.12312.143102030

. . . . . . . . . . . . .

(X, Y, Z and R, G, B data)

### **Rendering point cloud model**

- WebGL
  - JavaScript API based on Open GL ES 2.0
  - Web browser without any plugins
  - XB Point Stream WebGL

| Categories                    | Product Details     |               |                |
|-------------------------------|---------------------|---------------|----------------|
| Prodcut1                      |                     | Prices        | ¢100           |
| Prodcut2                      | - <i>1</i> / / /    | Flice:        | \$100          |
| Prodcut3                      |                     | Availability: | In Stock       |
| Prodcut4                      |                     | Model         | Product 123456 |
| Prodcut5                      |                     |               |                |
| Prodcut6                      |                     | Manufacturer: | Apple          |
| Prodcut7                      |                     | Quantity      | 1              |
| Prodcut8                      |                     |               |                |
| Prodcut9                      |                     | Add to Cart 📼 |                |
| Prodcut10                     |                     | -             |                |
| Newsletter                    |                     |               |                |
| Present new 3D product to you | Zoom In   Zoom Out  |               |                |
| Subscribe                     | Product Description |               |                |

### Result

#### **Movie of Capturing Process**



### **Result : 3D Scanning**

| Test Model-<br>Astroboy |        |       |       |  |
|-------------------------|--------|-------|-------|--|
| Number of total         | 247254 | 10089 | 10089 |  |
|                         |        |       |       |  |
| Size                    | 9.34MB | 387KB | 424KB |  |
|                         |        |       |       |  |
| Number of frame         | 1      | 3     | 3     |  |
| Match                   | No     | No    | Yes   |  |
| Noise/background        | More   | less  | less  |  |

### **Result : 3D Scanned Products**

| Number of total Points | 98024 | 44560   | 10089 |
|------------------------|-------|---------|-------|
| Number of frames       | 8     | 6       | 4     |
| Time*                  | 3mins | 1.5mins | 57sec |
| Number of<br>Iteration | 560   | 390     | 160   |

\*The testing is performed with an Intel i5-3.4GHz CPU

### **Result : Reconstruction Accuracy**

| Environment        | Symmetric | Non-symmetric | Under strong light<br>intensity |
|--------------------|-----------|---------------|---------------------------------|
| Minimized<br>Error | 0.002204m | 0.002143m     | 0.003506m                       |

- Symmetric (Shape containing similarity)
  - Limitation on the curvature evaluation by PCA
- Under strong light intensity
  - infrared sensor will be affected by strong light confuse to the infrared reflection
- Non-symmetric
  - reconstructed better 3D feature and more matched points

### **Result : Control of views in browser**

Mouse move to control rotation





#### Mouse scroll to control zooming



### **Result : Products Management**

#### **Products Management**



### Limitation

- The target object size is limited
  - Corresponding to AR marker size
- The target object cannot be transparent or translucency object
- The target scan distance is limited
  - The range about 0.6meter to 3 meter
- The Kinect resolution low quality
  - The large resolution only 640 \* 480

### **Future Works**

- Optimize the current algorithm to reduce post-processing time
- Increase matching accuracy
- Using ECE(Euclidean Cluster Extraction) for background noise remove
- Compress the 3D file size for increase store using



### Conclusion

- Low-cost 3D reconstruction system
  - Using Kinect costs just USD\$150
  - Point with color
  - Simple object extraction
- Web-enabled 3D rendering of product
  - 3D rendering of point cloud in web browsers
- A comprehensive system
  - Easy to use 3D content creation
  - New 3D experience for online shoppers



Thank you

