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Abstract 

Epoxidation reaction has been the subject of numerous investigations and a number of useful 

methodologies have been studied. The electrophilic reagents commonly used, react preferentially with 

electron-rich olefins. For this reason, electron-deficient olefins such us α,β-unsaturated esters react very 

slowly and with low yields. Besides, optically active epoxides are highly versatile intermediates that can be 

converted into a wide variety of enantiomerically enriched molecules. Our group has previously reported the 

synthesis of enantiomerically pure α-β unsaturated diesters of TADDOL and BINOL.
1 

As a part of the 

studies, we decided to analyze the stereoselective di-epoxidation of diacrylate derivatives with C2-symmetry.  

First, we studied simple substrates with the intention to extend the results to more complex molecules. Thus, 

several epoxidation methods were tested on α-β-unsaturated esters with the aim to improve the previously 

reported data. Among all the experimental conditions used, mCPBA reagent was the best one, giving the 

glycidic esters derivatives with very good yields and short reaction time compared with reported methods.
2 

Due to the fact that the reaction conditions were unsuccessful with the C2-diacrylate systems, we decided to 

study the reactivity of these substrates applying Density Functional Theories (DFT) calculations. The 

reactivity of mCPBA, in olefins epoxidation reactions, can be rationalized by frontier orbital interactions.
3
 

We evaluated the coefficients and shape of HOMO OMs of a series of simple esters and diesters derivatives 

from TADDOL and BINOL. We achieved interesting results concerning the reactivity of these compounds. 
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Introduction 

Epoxides are an important class of functional groups that are widely employed in organic synthesis. 

These compounds are important synthetic intermediates in medicinal chemistry as well as versatile building 

blocks in biologically active compounds and natural products synthesis. Many natural products possess 

epoxide units as essential structural moieties for their biological activities.
4 

The α-β-epoxy esters moiety are important intermediates for the synthesis of complex molecules. For 

example, methyl (2R,3S)-4-methoxyglycidate is a key intermediate in the synthesis of Diltiazem® 

hydrochloride, one of the most potent calcium antagonist that has been used for the last twenty years for the 

treatment of angina and hypertension. The asymmetric epoxidation of cis-ethyl cinnamate, produces ethyl 

(2R,3R)-3-phenylglycidate, a starting material for the synthesis of Taxol®  side chain, which is a mitotic 

inhibitor used in cancer chemotherapy (Figure 1).
 5
 

http://www.sciforum.net/search/?q=Viviana%20Dorn
mailto:andrea.costantino@uns.edu.ar
mailto:vdorn@uns.edu.ar
mailto:sdmando@criba.edu.ar
mailto:lckoll@criba.edu.ar


 
 

 Epoxidation of olefins is typically performed with organic peracids (such as m-CPBA and 

magnesium monoperoxyphthalate) or a combination of transition metal catalyst and a co-oxidant (such as 

H2O2, t-BuOOH, PhIO, NaOCl, and even oxygen). It has been a great challenge to devise a generally 

applicable and environmentally benign epoxidation method that operates under mild neutral conditions.
6
 In 

1909, Prilezhaev was the first to use peroxycarboxilic acids to oxidize isolated double bonds to the 

corresponding oxiranes. This transformation is referred to as the Prilezhaev reaction (Figure 2). The general 

features of the  Prilezhaev reaction are: 1) the reaction is stereospecific, since the stereochemistry of the 

alkene substrate is retained in the epoxide product and a syn addition of the oxygen to the double bond is 

observed in all cases; 2) the reaction rates increases if the substituents on the alkene are electron-donating 

and electron-withdrawing substituent on the peroxyacid; 3) most widely used peroxyacid is mCPBA which is 

a relatively stable solid with good solubility in most organic solvents. Epoxidation with mCPBA is usually 

carried out under ambient temperature and a mild basic work-up ensures the removal of the benzoic acid by-

product from the epoxide product. The observed stereospecificity supports the assumption that the 

epoxidation of alkenes by peroxyacids is a concerted process. The reaction take place at the terminal oxygen 

atom of the peroxiacid, and the π(C=C) HOMO of the olefin approaches the σ*(O-O) LUMO at an angle of 

180° (butterfly transition structure).
7 

 



As noted, the electrophilic reagents used in this reaction are preferably combined with electron rich 

olefins. So, α,β-unsaturated esters react very slowly and with low yields. Moreover, to our knowledge, there 

is no diepoxidation of α,β-unsaturated diesters reported in the literature. Thus, we decided to study the 

methodology of epoxidation of esters and in the first place, we studied simple substrates with the intention to 

extend the results to more complex molecules. Several epoxidation methods were tested on α-β-unsaturated 

esters with the aim to improve previously reported data.
8
 Due to the fact that the diepoxidation reactions 

were unsuccessful with TADDOL and BINOL acrylate diesters, (C2- systems), we study the reactivity of 

these substrates applying DFT calculations in order to justify these unpleasant results.  

Results and Discussions 

 

  As can be observed from Scheme 1, different conditions were tested: a) NaOCl 5% with and 

without TBAB (Methods A and B); b) mCPBA, assisted by ultrasound or microwaves (Methods C and D) 

and c) H2O2, L-proline, with or without TBAB, (Methods E to G).  

 

The reaction conditions for the microwave and ultrasound methods (C and D) were optimized for 

ester 4a. As can be seen from Table 1, the relation substrate vs oxidant was established as 1:2 in both cases.  

 
 

Among all the methods used, mCPBA allowed the epoxidation of α, β-unsaturated esters to 

derivatives of glicidic esters in short reaction times and good yields (60-95%) compared with traditional 

methods. On the other hand, Methods A and B, gave positive reaction with the simplest or less substituted 

substrates while H2O2 (Methods E to G) gave no satisfactory results in any case (Table 2). 



 

Taking into account that TADDOL
9
 and BINOL

10
 derivatives have proven to be excellent chiral 

auxiliars in assymetric reactions, we decided study the epoxidation reaction of the corresponding acrylate 

diesters (8a) and (9a) previously reported.
1
 Unfortunately, we were unable to obtain the corresponding 

products (Scheme 2). 

 

 



 These observations prompted us to study the epoxidation process, using density functional theory 

(DFT) calculations, considering that the reactivity of mCPBA, in olefins epoxidation reactions, can be 

rationalized by frontier orbital interactions,
3 

we theoretically study the neutral perbenzoic acid, the α,β-

unsaturated esters and the corresponding TADDOL and BINOL derivatives. The calculations were 

performed with the B3LYP
11

 DFT
12

 functional and the 6-31G* basis set, which is known to be an 

appropriate methodology for the theoretical study of this reactive system.
3,13

   

 Taking into account that the reaction take place as a concerted process when the σ*(O-O) LUMO of 

the peroxyacid approaches to the π(C=C) HOMO of the α,β-unsaturated esters, we calculate the 

corresponding MOs of the compounds involved in this process.  

 

 
 

Figure 3. LUMO MO (orange and yellow) for mCPBA 
  

 As can be seen from Figure 3, the LUMO MO of the neutral mCPBA have σ-symmetry at O-O bond. 

Then, we choose two α,β-unsaturated methyl esters as representatives, 4a that have a phenyl moiety attached 

directly to the C=C bond, and 7a that is an alkyl derivative. The first give the product 4b almost 

quantitatively and the second give 7b in lower yield (Table 2). As expected, both have π-symmetry at C=C 

bond (shown in Figure 4). Besides, both have a high orbital coefficient at the π(C=C) MO that can be 

inferred from the size of the lobes after doing the Kohn-Sham orbital analysis. 
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Figure 4. HOMO MOs (orange and yellow) for α,β-unsaturated esters 4a and 7a 

 

 On the other hand, the DFT calculations showed significant differences for the corresponding 

TADDOL and BINOL acrylate diesters which are no reactive in the studied conditions. In these species, the 

HOMO OMs are located mainly on the aromatic π-systems (Figure 5). Besides, when comparing the C=C 



reactive bond of the α,β-unsaturated methyl esters with that of the corresponding TADDOL and BINOL 

derivatives, the main change observed  is that, in the both last compounds, the orbital coefficient is close to 

zero over this π-system, and as a consequence, no orbital lobes are observed (shown with a red oval in Figure 

5).  

 Considering that the epoxidation reactivity is strongly affected by the HOMO-LUMO interaction, in 

orbital interaction terms, the lack of reactivity of TADDOL and BINOL derivatives could be attributed to the 

smaller (or zero) orbital coefficients at the π(C=C) HOMO MOs.
14
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Figure 5. HOMO MOs (orange and yellow) for TADDOL (8a) and BINOL (9a) derivatives 

 

 

Conclusions 

 

Based on the results presented here, we can conclude that for all the α,β-unsaturated esters studied in 

this work, the best yields were obtained with mCPBA in the presence of microwaves or ultrasound (Methods 

C and D). As can be seen in Table 2, in the case of esters 1a, 2a, 4a y 5a, the yields are good to excellent 

(72% to 96 %). It is important to note that 2b, 4b and 6b derivatives, as far to our knowledge, are not 

reported in the literature. Besides, the conditions reactions employed in these studies are of low 

environmental impact. In all cases, the products were purely obtained after the work-up and no further 

purification was needed. On the other hand, DFT calculations have shown to be a successful approach for 

studying the epoxidation of α,β-unsaturated esters as well as to explain the lack of reactivity of TADDOL 

and BINOL derivatives in term of frontier orbital interactions. 

Experimental Section 

 

General methods  

 

Unless otherwise noted, all reagents were purchased from commercial suppliers and used without 

purification. mCPBA commercial material (purity 85%) is washed with a phosphate buffer of pH 7.5 and 

dried under reduced pressure to furnish reagent with purity >99%. NaOCl was titrated with sodium 



thiosulfate to determine the amount of active chlorine. Thin layer chromatography was performed on Merck 

precoated silica gel 60 F254 plates and visualization was accomplished with UV light and/or 5% ethanol 

solution of phosphomolibdic acid. NMR spectra were recorded on a Bruker ARX 300 Multinuclear 

instrument, using CDCl3 as solvent. Compounds described in the literature were characterized by comparison 

of their 
1
H- and 

13
C-NMR spectra to the previously reported data. Ultrasonic reaction were performed in NDI 

ULTRASONIC 104X apparatus (Output power: 190W, Frecuency: 48 khz, 30°C +/- 1°). Microwave 

reactions were carried out in a microwave CEM Discover® at 200W, 85°C. 

Method A
15

 

To a solution of 5% NaOCl (1.1 mmol) at 0°C, 1.1 mmol of ester was added with vigorous stirring. 

After standing 30 min. at 0°C, the reaction mixture was placed in water-bath (20°C) and stirred for additional 

3 hs. The mixture was then extracted with CH2Cl2 (5 x 5 ml). The combined organic extracts were dried over 

anhydrous MgSO4. The solvent was evaporated under vacumm. 

Method B
16

 

To a solution of 5% NaOCl (1.1 mmol) and TBAB (0.009 mmol) in 2 ml of CH2Cl2 at 0°C, 1 mmol 

of ester was added with vigorous stirring. After standing 30 min. at 0°C, the reaction mixture was placed in 

water-bath (20°C) and stirred for additional 3 hs. The mixture was then extracted with CH2Cl2 (5 x 5 ml). 

The combined organic extracts were dried over anhydrous MgSO4. The solvent was evaporated under 

vacumm. 

Method C
17

 

2 mmol of mCPBA was disolved in 1 ml of CH2Cl2. To this solution, 1 mmol of ester in 2 ml of 

CH2Cl2 was added, and de mixture was placed in an ultrasonic bath. The reaction progress was monitored by 

TLC plates of silica gel 60. The crude reaction was filtered through a Buchner funnel with glass wool 

containing celite in order to retain impurities. The organic layer was then extracted with 10% bisulfite 

solution (2 x 8ml) and saturated sodium bicarbonate (2 x 8ml). The aqueous layer was further extracted with 

CH2Cl2 (3 x 8ml). The combined organic extracts was dried over MgSO4 and the CH2Cl2 removed under 

vacuum.  

Method D 

2 mmol of mCPBA was disolved in 1 ml of CH2Cl2 in a microwave vessel and then 1 mmol of ester 

was added and mixed carefully with a small rod. The mixture was irradiated in the microwave oven at 200W 

for the times reported in Table 1. The microwave was programmed to give a maximum internal temperature 

to 85 °C. The reaction progress was monitored by TLC plates of silica gel 60. The crude reaction was filtered 

through a Buchner funnel with glass wool containing celite in order to retain impurities. The organic layer 

was then extracted with 10% bisulfite solution (2 x 8ml) and saturated sodium bicarbonate (2 x 8ml). The 

aqueous layer was further extracted with CH2Cl2 (3 x 8ml). The combined organic extracts were dried over 

MgSO4 and the CH2Cl2 removed under vacuum.  

 

Methyl oxirane-2-carboxylate (1b) 

The best yield was obtained with method D (72%) in 20 min of reaction time. Yellow Oil. 
1
H - NMR (300 

MHz, CDCl3): δ 3.79 (3H, s), 3.45 (2H, s), 2.98 (1H, s); 
13

C - NMR (75.4 MHz, CDCl3): δ 51.95, 46.77, 

45.81, 169.41.  



Isobutyl oxirane-2-carboxylate (2b) 

The best yield was obtained with method D (80%) in 10 min of reaction time. Yellow Oil. 
1
H – NMR (300 

MHz, CDCl3): δ 0.85 (3H, d), 1.87 (1H, m), 2.85 (2H, m), 3.33 (CH, t), 3.85 (2H, d); 
13

C - NMR (75.4 MHz, 

CDCl3): δ 18.81, 27.54, 46.08, 47.15, 71.34, 169.15. 

Methyl-2-methyloxirane-2-carboxylate (3b) 

The best yield was obtained with method C (57%) in 12 hs of reaction time. Yellow Oil. 
1
H – NMR (300 

MHz, CDCl3): δ 1.51 (3H, s), 2.70 (1H, d, 4.4 Hz), 3.04 (1H, d, 4.4 Hz), 3.69 (3H, s); 
13

C - RMN (75.4 

MHz, CDCl3): δ 17.42, 53.72, 53.00, 52.60, 171.19. 

Methyl-2-methyl-3-phenyloxirane-2-carboxylate (4b) 

The best yield was obtained with method D (96%) in 15 min of reaction time. Yellow Oil. 
1
H – NMR (300 

MHz, CDCl3): δ 1.15 (3H, s), 3.64 (1H,s), 4.18 (3H,s), 6.97-7.87 (H-Ar, m);
 13

C - NMR (75.4 MHz, CDCl3): 

δ 12.66, 52.70, 59.87, 62.49, 126.81, 128.36, 133.84, 171.26. 

Methyl 3-phenyloxirane-2-carboxylate (5b) 

The best yield was obtained with method D (80%) in 15 min of reaction time. Yellow Oil. 
1
H - NMR (300 

MHz, CDCl3): δ 3.35 (1H, d), 3.61 (3H, s), 3.94 (1H, d), 7.12-7.27 (HAr, m); 
13

C - NMR (75.4 MHz, 

CDCl3): δ 52.45, 56.63, 57.96, 125.82, 128.63, 128.96, 130.31, 168.71. 

Methyl 2,3-diphenyloxirane-2-carboxylate (6b) 

The best yield was obtained with method D (58%) in 15 min of reaction time. Yellow Oil. 
1
H - NMR (300 

MHz, CDCl3): δ 3.74 (3H, s), 4.52 (1H, s), 6.81-8.12 (H-Ar, m); 
13

C - NMR (75.4 MHz, CDCl3): δ 12.78, 

52.68, 59.83, 62.36, 126.67, 128.33, 129.73, 130.34, 133.79, 134.46, 135.09, 171.25. 

Methyl 2,3-dimethyloxirane-2-carboxylate (7b) 

The best yield was obtained with method D (55%) in 20 min of reaction time. Yellow Oil. 
1
H - NMR (300 

MHz, CDCl3): δ 1.26 (3H, s), 1.45 (3H, d, 4.2Hz), 3.23, 3.67 (3H,s); 
3
C - NMR (75.4 MHz, CDCl3): δ 13.22, 

13.38, 52.67, 57.44, 58.09, 172.38 

 

Computational Procedure 

 The calculations were performed with Gaussian09.
18

 The initial conformational analysis of selected 

compounds was performed with the semiempirical AM1 method. The geometry of the most stable 

conformers thus obtained was used as starting point for the B3LYP studies of the corresponding esters and 

peroxide at the 6-31G* level. Figures were built with the VMD program using an isosurface of 0.02. 
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