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Abstract: In the present study, a development thermodynamic study of the papers [JNET, 2011, 36 (1), 

75-98 and Can. J. of Phy., 2012, 90(2): 137-149] is introduced. The non-stationary BGK (Bhatnager- 

Gross- Krook) model of the kinetic equations for a rarefied gas mixture affected by nonlinear thermal 

radiation field is solved instead of the stationary equations. The unsteady solution gives the problem a 

great generality and more applications. The non-equilibrium thermodynamic properties of the system 

(gas mixture + the heated plate) is investigated. The entropy, entropy flux, entropy production, 

thermodynamic forces, kinetic coefficients are obtained for the system. The verification of the 

Boltzmann H-theorem, Le Chatelier principle, second law of thermodynamic and Onsager’s reciprocity 

relation for the system are made. The ratios between the different contributions of the internal energy 

changes based upon the total derivatives of the extensive parameters are estimated via the Gibbs 

formula. The results are applied to the Argon-Neon binary gas mixture, for various values of both of 

molar fraction parameters and radiation field intensity. 3D-Graphics illustrating the calculated variables 

are drawn to predict their behavior. The results are discussed. 
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1. Introduction 

   All matter emits thermal radiation continuously, and consequently thermal radiation is an inherent 

part of our environment. Radiative heat transfer is important in system analysis particularly when high 
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temperatures are involved, cryogenic systems are also considered, when radiation is being utilized as a 

source flux, or when radiative transfer is the primary mode of heat rejection. Some application examples 

where thermal radiation transfer is of primary importance include solar collectors, boilers and furnaces, 

spacecraft cooling systems, and cryogenic fuel storage systems [1,2].  

In spite of the fact that, the statistical-mechanical study of fluid mixtures far from equilibrium is a 

very interesting subject from a theoretical as well as a practical viewpoint. There are very few articles in 

the literature concerning this topic [3-9], compared to the huge amount of papers in the case of a single 

gas; see e.g. [10-16]. 

The particles of a gas absorb and radiate thermal energy. The interaction with the thermal radiation 

that is contained within the volume of the body may be important in gases, since the latter unlike solids 

and liquids are capable of undergoing conspicuous volume changes. Taking this interaction into account 

makes the behavior of the gases more realistic. Radiative heat transfer in gases has important 

applications from combustion systems to modeling atmospheric processes. The magnitude of radiative 

heat fluxes can have profound effects on combustion performance and environmental impact. For this 

purpose, Abourabia and Abdel Wahid [13], have introduced a new approach for studying the influence 

of a thermal radiation field upon a rarefied neutral gas. This idea was applied to a steady problem of the 

half space filled by a neutral gas specified by a flat rested heated plate. The present paper is extended to 

study the unsteady problem for a rarefied binary gas mixture affected by nonlinear thermal radiation 

field. 

  This new unsteady approach is made for studying the influence of thermal radiation field on a 

rarefied neutral binary gas mixture. Now, we have to solve two systems of partial differential equations 

(one for each component of the gas mixture) instead of one system of ordinary differential equations as 

we done before in [13].   

 For this purpose, we use coupled systems of unsteady kinetic BGK equations, one for each 

component of the binary gas mixture. The radiation field effect is inserted into the force term of the 

Boltzmann equation as a radiation force. These procedures are followed, using Liu-Lees model for two 

stream Maxwell distribution functions and the moment method. The behavior of the macroscopic 

properties of the binary gas mixture is predicted. This is made for various radiation field intensities due 

to different plate temperatures. The temperature and concentration are, in turn, substituted into the 

corresponding distribution functions. This approach will permit us to study the behavior of the 

equilibrium and non-equilibrium unsteady distribution functions for various values of the molar fraction 

parameters. The important non-equilibrium thermodynamic properties of the system (binary gas mixture 

+ heated plate) are calculated. Particularly, the entropy, entropy flux, entropy production, 

thermodynamic forces and kinetic coefficients is obtained. The verification of the second law of 

thermodynamic, Boltzmann H-theorem and Onsager’s reciprocity relation is made. The ratios between 

the different contributions of the internal energy changes are predicted via the Gibbs' formula. The 

results are applying to the Argon-Neon binary gas mixture. Finally the important conclusions of the 

paper are indicated. 
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2.The Physical Problem and Mathematical Formulation 

  Consider a binary gas mixture consisting of monatomic molecules of two type's components A and B. 

The gas mixture fills the upper half of the space ( 0y  ), which is bounded by an infinite immobile flat 

plate (y=0), in a uniform pressure 
SP [2,13]. The plate is heated suddenly. This is producing thermal 

radiation field. The flow is considered unsteady, and compressible. In a frame co-moving with the fluid 

the behavior of the binary gas mixture is studied under the following assumptions:  

(i) The velocities of the incident and reflected particles are equals at the rested plate boundary; but of 

opposite signs. This is happened according to Maxwell formula of momentum defuse reflection. On the 

other hand the exchange will be produced by the temperature difference between the particles and the 

heated plate. That is taking the form of full energy accommodation [17]. 

(ii) The gas is considered gray absorbing-emitting but not a scattering medium. 

(iii) A thermal radiation force is acting from the heated plate on the binary atomic gas mixture, written 

in vector notation [17-19] as 

[
3

44 16 ( , )
( , )

3 3

s s
y

s s

T T y t
F T y t F

n c n c y

   
   


]                                                                    

(1)              

 where  Fy , T,  σS , ns and c are the thermal radiation force component along  y-axis direction, mean 

temperature, Stefan-Boltzmann constant, gas concentration at the plate surface and the velocity of light, 

respectively.  

For unsteady motion, the process in the system subject to a thermal radiation force Fy can be expressed 

in terms of the BGK kinetic equations in the form [10-12]: 
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(3)    

where Cy , f   and  m are the velocity of the gas particles component along  y-axis, the two–stream 

Maxwell distribution function and  mass of particles of the   type. The four quantities 

AA , AB , BB and BA  are the collision frequencies that are given in [12,20-22] as: 

s pn V      and s pn V     where 
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  ,(   and  or A B   ),  

where pV  ,  , effd , sn   and    are the mean velocity of particles, the reduced mass,  the 

diameter of the effective collisions sphere, gas concentration at the plate surface, and effective collisions 

cross section for  and   types, respectively. 
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The local Maxwell distribution functions 
0f   are denoted by:  

   

2

0 3

2

exp ,
2

2

n C
f

RT
RT








 
  

  

 where R is the gas constant and 
2 2 2 2

x y zC C C C   . 

Lee’s moment method [23-24] is employed here to obtain the solution of the BGK equation. When the 

application of heat to a gas. It to expand, it is thereby rendered rarer than the neighboring parts of the 

gas; and it tends to form an upward current of the heated gas, which is of course accompanied with a 

current of the more remote parts of the gas in the opposite direction. The fresh portions of gas are 

brought into the neighborhood of the source of heat, carrying their heat with them into other regions 

[25]. We assume that the temperature of the upward going gas particles is
1T  , while the temperature of 

the downward going gas particles is 
2T  [13,26]. The corresponding concentrations are 

1n   and 

2n  .We use the Liu-Lees model of the two–stream Maxwell distribution function near the plate [17,27] 

for particles of the   type, which can be represented as:  
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(4) 

We are interesting with the moments of the distribution function. Therefore, we derive the Maxwell’s 

moment equations by multiplying the BGK equation by a function of velocity ( )iQ C  and integrating 

over velocity space. How many and what forms of iQ  will be used is dependent on how many unknown 

variables need to be determined and how many equations need to be solved.  Multiplying Eqs.(2,3) by 

some functions of velocity ( )i iQ Q C , and integrating with respect to C.  The discontinuity of the 

distribution function, caused by the cone of influence [17], is taken into consideration. The resulting 

equation can then be written as follows:  for particles of each gas component   with the second one   

type, 
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 (5)  

where x y zdc dC dC dC . 

Equations (5) are called the general equations of transfer [28]. Using the dimensionless forms by taking: 
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(6)                 

where AB , N  and dU   are the  relaxation time between collisions of the A-B species, non-

dimensional constant and internal energy change of  the gas species of the   type, respectively.    

Now, we can take 2

iQ C and 21

2
yC C . Substituting formula (4) into the transfer Eq.(5), using (6), 

we get the moments of the BGK equations in dimensionless form.  

 After dropping the bars we have eight equations, four for each component of the binary gas mixture as 

follows: For particles of the ,A B   types, the conservation of energy is 
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(7) 

The heat flux component in the y-direction is                                 
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(8) 

The above two equations, for both groups of equations, corresponding to each species, are 

complemented by the equations of state: 

 .P n T const    ,                                                                                                                                

(9) 

We shall study the problem in a coordinate system of the phase space in which the bulk velocity u is 

located at the origin. Thus, we get the fourth equation: 
1 1

2 2
1 1 2 2 0n T n T   

 
  

 
                                                                                                                       

(10) 
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Travelling wave solution method [29-30] is used to solve the problem, considering  

 ly mt    .                                                                                                                                    

(11) 

Such that to make all the dependent variables as functions of . Here l and m are transformation constants, which 

do not depend on the properties of the fluid but as parameters to be determined by the boundary and initial 

conditions [29-30]. Using Eq.(11) we get the derivatives:     

  , and 1  , 
a a a a
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a a a a
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,                                                                

(12) 

 where a is positive integer. Substituting from  Eqs. (11-12),  into Eqs. (7-8) we get: 
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(14)  

Eqs.(9,10,13,14) are solved to obtain the solution of  the initial and boundary value problem for each 

gas components to estimate the four unknowns 1 2 1 2, , and T T n n    . 

The values of the integrated constants can be estimated under the initial and boundary conditions (as 

( , ) (0,0) 0y t    ): 
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(17) 

The temperature of the incident particles is assumed to be T2 while the temperature of the reflected 

particles from the plate is the temperature T1, they are related such that [31-32]: 

2 1( 0)  ( 0) :  0 1,T T                                                                                                         

(18) 

where    is the ratio between the plate and gas temperatures. The parameter   can take arbitrary 

positive value less than unity as the plate is hotter than the gas. We can obtain by solving the algebraic 

system of Eqs. (15-18) that  
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(19) 

The above four quantities represent the initial and boundary conditions. 

Introducing the obtained quantities 1 2 1 2, , and T T n n  into the two stream Maxwell distribution function 

where;  
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(20)  

we can get the sought distribution functions. These estimated distribution functions of the gas particles 

enable us to study their behavior in the considered system, which is not possible by taking the way of 

the solution of Navier–Stokes equations. This will be the starting point to predict the irreversible 

thermodynamic behavior of the system in the next section. 

 

3. The Non-Equilibrium Thermodynamic Properties of The System: 

 

  The everyday resorts to the linear theory of the thermodynamics of irreversible processes still 

constitute great interests [33-35]. This is associated both with the general theoretical importance of this 

theory and its numerous applications in various branches of science. It is unquestionable that the 

concept of entropy has played an essential role both in the physical and biological sciences [36]. Thus, 

we start the thermodynamic investigations of the problem from the evaluation of the entropy S  per unit 

mass of the binary gas, which is written as [37]: 
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S  is the entropy of the gas species of the   type denoted by [38],

 ( , )S y t f Logf dc    .  The y-component of the entropy flux vector has the form [39], 
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 where 
yJ   is the y-component of the entropy flux of the gas species of the   

type denoted by, ( , )y yJ y t c f Logf dc    , while the Boltzmann's entropy production [33-35] in the 

unsteady state 
S is expressed as,  
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. Following the general theory of thermodynamic [40-45], we could 

estimate the thermodynamic forces; the first corresponding to the change in the concentration nX , as: 
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the second thermodynamic force corresponding to the change in the 

temperature TX , as [2,7,13]:  
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and the third thermodynamic force corresponds to the change in the 

radiation field energy RX , as [2,7,13],
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T
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 is the dimensionless radiation field energy influences the gas 

particles and y is the thickness of the layer adjacent to the flat plate in units of the mean free path-the 

distance between two collisions of the gas particles-in dimensionless form. 

After calculating the thermodynamic forces and the entropy production, we can obtain the kinetic 

coefficients Lij from the relationship between the entropy production and the thermodynamic forces, via 

the form [34,35,46]: 

 
11 12 13 1

1 2 3 21 22 23 2

31 32 33 3

( , ) 0S ij i j

i j

L L L X

y t L X X X X X L L L X

L L L X



  
  

    
  
  

 .  

This constitute the restriction on the sign of phenomenological coefficients ijL , which arise as a 

consequence of the second law of the thermodynamics [34], which can be deduced from the standard 

results in algebra. The necessary and sufficient conditions for ( , ) 0s y t   are fulfilled by the 

determinant, 0ij jiL L   , and all its principal minors are non-negative too. Another restriction on ijL  

was established by Onsager (1931). He found that, besides the restriction on the sign, the 

phenomenological coefficients verify important symmetry properties. Invoking the principle of 

microscopic reversibility and using the theory of fluctuations, Onsager was able to demonstrate the 

symmetry property denoted by, ij jiL L ,  which is called the Onsager's reciprocal relations.  

The Gibbs formula for the variation of the internal energy applied to the system (binary gas mixture + 

heated plate), ( , )dU y t  is  

( , ) ( , ) ( , ) ( , )S V RdU y t dU y t dU y t dU y t    .  



 9 

 

 

The internal energy change due to the variation of the extensive variables, such as entropy
SdU , volume 

VdU  and in addition the temperature gradient produced by the thermal radiation field 
RdU , are 

respectively read for a binary gas [37], as follows:  
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The pressure and change in volume are
2
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P n T dV
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,  
n n S S

dn t y dS t y
t y t y
   

   
   
   

and 1, 1y t   . 

4. Results and Discussion 

We investigated the behavior of the binary gas mixture under the influence of a non-linear thermal 

radiation field in the unsteady state of a plane heat transfer problem in the  

system (binary gas mixture + heated plate). The thermal radiation is introduced, in the force term of the 

Boltzmann equation for a rarefied gas subject to the inequalities [47], d  , where 1/3n  is the 

average spacing between the molecules, both   and d are the mean free path and the molecular 

diameter, respectively. In all calculations and figures, we take the following parameters values from [48, 

49] for the Argon-Neon binary gas mixture, where the particles of the A and B components are the 

argon and neon gases, respectively: 
5 -2 -1 -4 -1 -11000 ; 5.6705 10  J.m .sec .K ; 8.3145 J.K .mol ;s sT K R    

-23 -1 8 -1 18 -31.3807 × 10 J.K ;   2.9979 10 m.sec ; 3 10 m ;  B sK c n      
-2739.948 ; 20.183 ; =1.6605 × 10 Kg is atomic mass unit;A u B u um m m m m   

-10 2 -1 3

 = 3.84 10 m; 1.017m; 6.45 10 m.sec ; =1.577 10 sec;A A TA Ad V       
-10 2 -1 3

 =2.425 10 m; 2.551m; 9.077 10 m.sec ; =2.81 10 sec;

for a fixed 0.5; (1000K) 0.609694,  (1000K) 1.20676 ,  

B B TB B

A A B

d V

C N N

     

  
 

 where BK , TV  and   are Boltzmann constant, thermal velocity, and the relaxation time of  the gas 

species of the  type, respectively.  

Although we calculate all the sought variables in three various radiation field intensities due to different 

plate temperatures ( T 800K ,1000K ,1400K ), we particularize our graphics in one case corresponding 

to (T 1000K ), to economize the figures and the illustrations. 

All figures show that all variables satisfy the equilibrium condition where in the equilibrium as 1  : 

( 1) 1,  ( 1) 1,  ( 1)  '  maxmum value, ( 1) 0, ( 1) 0,

 ( 1) 0,  ( 1) 0,  ( 1) 0,  ( 1) 0,  ( 1) 0,  

S

V R T n R

n T S It s dU

dU dU X X X

     

    

         

         
, see figures 

(1 to 8-a). 

Now, we will discuss the behavior of the gas particles far from the equilibrium state; while the number 

density n decreases, with time, the temperature T increases, these happen for all values of  . This is 
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due to the fact of the uniform pressure, see figures (1,2-a). Similarly, while the number density n 

increases, with time, the temperature T decreases, these happen for all values of 
AC . This is due to the 

fact of the uniform pressure, see figures (1,2- b). The entropy S always increases with time and the 

entropy production  has a nonnegative values for all values of t , and the molar fraction 
AC . This 

gives a complete satisfaction of the second law of thermodynamics and the Boltzmann H-theorem. This 

behavior agrees with the famous Le-Chatelier principle. 

The behavior of the different contributions of the internal energy change can be illustrated in figures (3, 

4, 5-a,b). The numerical ratios between the different contributions of the internal energy changes based 

upon the total derivatives of the extensive parameters are predicted via the Gibbs formula. Taking into 

consideration their different tendencies, the maximum numerical values of the three contributions at 

various radiation field intensity (corresponding to various plate temperatures), are ordered in magnitude 

as follows:  

(a) For a fixed value 0.5AC   and variable values of in the considered range (0.65< 1  ), we have  

(1000K) : (1000K) : (1000K)  1 :  0.333 :   3.333,s V RdU dU dU  see figures (3-a, 4-a, 5-a).  

Figure (3-a) indicated that, RdU reaches its maximum numerical value at 0.65  which means that the 

more the temperature difference (between the plate surface temperature and the binary gas mixture 

temperature) the more will be the effective contribution of the thermal radiation energy in the system 

total energy change. This is attributed to the behavior of the corresponding values of the thermodynamic 

force  RX itself, see figure (8-a). 

 (b) For a fixed value ( 2 / 3  ) and variable values of AC  in the considered range ( 0.2< 0.95AC  ), we have 

(1000K) : (1000K) : (1000K)  1 : 0.132:1.32s V RdU dU dU
 
, 

see figures (3-b, 4-b, 5-b). The contribution of RdU  reaches its maximum numerical value at the values 

of 0.2 AC  and 0.8BC   which represent indirectly the concentrations of the heavier gas (Argon), and 

the lighter gas (Neon) respectively. This means that, the more the lighter mass of the gas species, the 

more the effectiveness of the thermal radiation energy contribution in the system total energy change, 

see figure (3-b).This is also due to the behavior of the corresponding value of the thermodynamic force 

 RX  itself corresponding to each component in the binary gas mixture, see figure (8-b). The 

thermodynamic force TX  (due to the gradient of temperature) will have the opposite direction to the 

thermodynamic force nX
 
(due to the gradient of the density), see figures (6,7-a,b) .This gives a 

qualitative agreement in the behavior with the thermodynamic forces  determined  in [48], comparing 

with the same gas mixture (Ar-Ne) at the same molar fraction 0.5AC  .  

According to our calculations, the restrictions imposed on the kinetic coefficients ijL  are satisfied 

where  11 0L   ,  22 0L   and 33 0L  , for all values in the considered ranges of both  and AC . 

Onsager's reciprocal relations are satisfied, as we have  12 21 13 31 32 23,  and L L L L L L   , for all values 

in the considered ranges of both  and AC . 

5. Conclusions  

By analyzing the obtained results, we conclude that: 

  a)  The key controlling factors, which are, directly, proportional to the effectiveness of the radiation 

energy in the system total energy change, are: 
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i) The ratio between temperature of the plate surface and the gas mixture particles, ii) The mass 

ratio between each component of the binary gas mixture, iii) The molar fraction of each component 

of the mixture.  

b) At a relatively high temperature ( 1000KT  ), the radiation energy contribution in the total internal 

energy change becomes the dominant one and cannot be ignored at all.   

c) At a relatively small temperature ( 600KT  ), the radiation energy contribution in the total internal 

energy change become less by orders of magnitude than the other kinds of energy contributions.   

d) The lighter gas component (Neon) is affected by the non-linear thermal radiation field more than for 

the heavier one (Argon).  

e)  The second law of thermodynamics, the Boltzmann H-theorem, the Le-Chatelier principle and the 

Onsager's reciprocal relations, are all satisfied for the studied binary mixture system.  

f) The negative sign at some kinetic coefficients, corresponding to cross effects, imply in such cases that 

there is a heat flux opposite to the main flux due to the imposed thermodynamic force (gradient). 

For example, the negative sign in front of 12TnL L and 13RnL L , implies that there is a flow 

caused by the temperature gradient, from a lower to a higher temperature, known as thermal 

diffusion (or Soret effect) which gives a qualitative agreement with the results of study [48].  

 

 

 

 

 

 

 

Figure 1. (a) Concentration  n  vs. t and χ at CA =0.5, y=0.3. (b) Concentration  n  vs. t and CA at  

χ=0.66, y=0.3. 

 

 

Figure 2. (a) Temperature T vs. t and χ at CA =0.5, y=0.3. (b) Temperature T vs. t and CA at 

χ=0.66, y=0.3. 
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Figure 3.  (a): dUS vs. t and χ at CA =0.5, y=0.3. (b) dUS vs. t and CA at χ=0.66 , y=0.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. (a) dUv vs. t and χ at CA =0.5, y=0.3. (b) dUv vs. t and CA at χ=0.66 , y=0.3. 

 

 

Figure 5.  (a): dUR vs. t and χ at CA =0.5, y=0.3. (b) dUR vs. t and CA at χ=0.66 , y=0.3. 
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