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ABSTRACT 
Enterococci are Gram-positive bacteria responsible for causing multiple nosocomial 
infections in humans. Chemoinformatics could be a great ally of medicinal chemistry in 
the search for efficacious anti-enterococci drugs. Current methods cannot model the 
anti-enterococci activity and ADMET (absorption, distribution, metabolism, elimination, 
toxicity) properties at the same time. We create the first multitasking model for 
quantitative-structure biological effect relationships (mtk-QSBER), focused on the 
simultaneous prediction of anti-enterococci activities and ADMET profiles of 
compounds.  The mtk-QSBER model was constructed by using a large and 
heterogeneous dataset of chemicals, and exhibited accuracy higher than 95% in both 
training and prediction sets. We provided the physicochemical interpretations of the 
molecular descriptors (probabilistic quadratic indices) that entered in the model. In 
order to demonstrate the practical utility of our model, we predicted multiple biological 
profiles of the investigational antibacterial drug oritavancin, and the results of the virtual 
predictions strongly converged with the experimental evidences. To date, this is one 
the most promising attempts to use a unified in silico model to guide drug discovery in 
antimicrobial research by predicting the antibacterial potency against enterococci, as 
well as the safety in laboratory animals and humans. 
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Introduction 
Enterococci belong to a group of Gram-positive, facultative anaerobic bacteria that can 
occur both, as single cocci and in chains.[1] These bacteria constitute dangerous 
opportunistic pathogens, which are major causes of nosocomial infections such as 
bacteremia, bacterial endocarditis, diverticulitis, meningitis and urinary tract 
infections.[1-3] When compared with other Gram-positive cocci such as bacteria of the 
genera Staphylococcus and Streptococcus, enterococci exhibit a lower degree of 
pathogenicity in terms of mortality, but they are reservoirs of antibiotic resistance 
genes.[4] Thus, multidrug resistant (MDR) strains of bacteria belonging to Enterococcus 
have emerged in the last years.[5-6] 
 
Two problems arise to eliminate enterococci: the lack of an efficient antimicrobial 
chemotherapy, and appearance of undesirable ADMET (absorption, distribution, 
metabolism, elimination, toxicity) profiles that the antibacterial agent may have. From 
one side, medicinal chemistry has brought great benefits to drug discovery, being a 
discipline focused on the design, identification and preparation of biologically active 
compounds, and studying also the mechanisms of action at molecular level, as well as  
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the ADMET (absorption, distribution, metabolism, elimination, toxicity) parameters.[7] At 
the same time, even with the alliance of medicinal chemistry with powerful 
experimental techniques such as high-throughput screening (HTS) and combinatorial 
chemistry, the chemical space to be covered is huge (1063 small and medium size 
molecules) in order to search for new therapeutic agents with the desired properties.[8] 
On the other hand, if a drug candidate is discovered, serious concern is expected due 
to the possible lack of adequate ADMET properties,[9-11] which remains as one of the 
principal causes of disapproval of drugs. 
 
Chemoinformatics has offered very useful theoretical/computational tools in drug 
discovery,[12-15] contributing to rationalize the chemical synthesis, as well as the 
evaluation of biological and/or ADMET profiles, and consequently, strengthening its link 
with medicinal chemistry. In fact, in the last years, promising chemoinformatic multi-
target methodologies for quantitative-structure activity relationships (mt-QSAR) have 
been used for the prediction of diverse biological profiles,[16-40] against dissimilar targets 
(biomolecules, microorganisms, cell lines, mammals), and by using large and 
heterogeneous datasets of molecules. These methodologies have made possible the 
integration of different types of biological and chemical data under many sets of 
experimental conditions.[41-46]   
 
Until now, there is no methodology or approach able to predict anti-enterococci activity 
and ADMET properties at the same time. The existence of such methodology would 
constitute a prime interest in drug discovery because the process of designing a drug 
would be guided in several stages: from in vitro assays to clinical studies. For this 
reason, and considering all the ideas mentioned above, this work introduces a 
promising chemoinformatic approach focused on constructing a multitasking model for 
quantitative-structure biological effect relationships (mtk-QSBER). In this context, the 
mtk-QSBER model is devoted to perform simultaneous predictions of anti-enterococci 
activities and ADMET parameters, with the aim of searching for safer antibacterial 
drugs against the aforementioned pathogens.  
 

Materials and Methods 
Dataset, calculation of molecular descriptors and creation of the mtk-QSBER 
model 
The chemoinformatic methodology used for the extraction of the dataset, generation of 
the molecular descriptors, and construction the mtk-QSBER model has been reported 
in previous works of Gonzalez-Diaz and coworkers.[41] Also, similar explanations can be 
found in a recent report of Speck-Planche and Cordeiro.[45-47] Anyway, here, only the 
essential details will be given (Fig. 1). The dataset was composed by 29309 different 
drugs/chemicals that were extracted from CHEMBL,[48] being this a public source 
available at https://www.ebi.ac.uk/chembl/. The 29309 drugs/chemicals were assayed 
by considering at least 1 out of 19 measures of biological effect (me), against at least 1 
out of 163 biological targets (bt). These biological targets include biomacromolecules, 
bacterial strains, cell lines, and superior organisms such as mice, rats, and humans. All 
the experiments were carried out by considering at least 1 out of 3 types of assay 
information (ai), with at least 1 out of 9 categories of target mapping (tm), and where at 
least 1 out of 3 levels of curation/reliability of the assays (lc) were taking into account. 
Notice that here, the combination of the elements (me), (bt), (ai), (tm), and (lc) represents 
a unique experimental condition, which can be defined by the ontology cj → (me, bt, ai, 
tm, lc). In our dataset, several chemicals were tested in more than one experimental 
condition. For this the dataset contained 46822 cases as results of the combination of 
the aforementioned elements of cj. 
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Fig. 1. Descriptive overview of the main steps involved in the development of the mtk-
QSBER model. 

 
Each of the 46822 cases were annotated as positive ([BEi(cj) = 1]) or negative [BEi(cj) = 
-1] according to certain cutoff values (Table 1), being BEi(cj) a binary (categorical) 
variable, which defines the specific biological effect of a compound i under 
experimental condition cj. On the other hand, a *txt file containing the SMILES codes of 
the cases was manually changed to *.smi, and  after transformed to *.sdf by employing 
the program OpenBabel 2.3.0.[49] For the calculation of the molecular descriptors from 
the *.sdf file, the software TOMOCOMD-CARDD was used.[50] Descriptors calculated 
here, from order 1 to 5, and weighted by the hydrophobicity, the polar surface area, 
and the refractivity, are derived from the classical quadratic indices that have been 
widely reported in the literature.[51-56] They can be defined according to the following 
expression: 
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In the Eq. 1, Pqk(x) is the mutual probability quadratic index of order k, weighted by the 
atomic physicochemical property x. Here, x is a molecular vector, [XT ] is the transpose 
of [X], being the latter, a column vector (n × 1 matrix) with components x1,…, xn ( 
different atomic  physicochemical properties). In addition, the terms kpij represent the 
mutual probabilities of the adjacent vertices (atoms) i and j belonging to the kth power 
of the matrix P. The element can be calculated according to the following expression:  
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being kmij the elements of the classical matrix M previously reported.[51-56] Descriptors of 
the type Pqk(x) can only take into account the chemical structures of the molecules. 
More than 40 years ago, the statisticians George Box and Gwilym Jenkins published a 
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promising approach, which was devoted to the analysis, modeling, and forecasting of 
time series.[57-58]  
 
Table 1. Summary of the cutoff values for the different measures of biological effects. 

Measure of effect 
(Units) 

Biological 
Profile 

Concept 
Cutoff 
value

a
 

AC50 (nM) 
ADMET 

(Metabolism) 
Concentration to elicit the 50% of the 
maximal effect 

≤6309.58 

AUC (μM.hr)iv-H 
ADMET 

(Bioavailability, 
elimination) 

Area under the curve after intravenous 
administration in humans 

≥88.57 

AUC (μM.hr)iv-LA 
ADMET 

(Bioavailability, 
elimination) 

Area under the curve after intravenous 
administration in laboratory animals 
(Mus musculus and/or Rattus 
norvegicus) 

≥10.00 

AUC (μM.hr)oral-H 
ADMET 

(Bioavailability, 
elimination) 

Area under the curve after oral 
administration in humans 

≥64.39 

AUC (μM.hr)oral-LA 
ADMET 

(Bioavailability, 
elimination) 

Area under the curve after oral 
administration in laboratory animals 
(Mus musculus and/or Rattus 
norvegicus) 

≥15.00 

F (%)oral 
ADMET 

(Bioavailability) 

Oral bioavailability assessed as the 
fraction of an oral administered drug 
that reaches systemic circulation 

≥60.00 

IC50 (nM)ime 
ADMET 

(Metabolism) 

Concentration required for 50% 
inhibition of the activity of a protein 
involved in the metabolism 

≤2400 

Ki (nM)ime 
ADMET 

(Metabolism) 
Inhibition constant associated to a 
protein involved in the metabolism 

≤2200 

LD50 (μmol/kg)ip 
ADMET 
(Toxicity) 

Lethal dose at 50% after intraperitoneal 
administration 

≥1110.00 

LD50 (μmol/kg)oral 
ADMET 
(Toxicity) 

Lethal dose at 50% after oral 
administration 

≥1322.88 

MIC (nM) 
Antibacterial 

activity 
Minimum inhibitory concentration 
against enterococci. 

≤17000.00 

MIC50 (nM) 
Antibacterial 

activity 

Minimum inhibitory concentration at 
which 50% of isolates belonging to the 
genus Enterococcus are inhibited 

≤6529.34 

MIC90 (nM) 
Antibacterial 

activity 

Minimum inhibitory concentration at 
which 90% of isolates belonging to 
Enterococcus are inhibited 

≤16541.75 

Papp (nm/s) 
ADMET 

(Absorption) 
Permeability ≥60.00 

T1/2 (hr)iv-LA 
ADMET 

(Elimination) 

Half life after intravenous administration 
in laboratory animals (Mus musculus 
and/or Rattus norvegicus) 

≥1.00 

T1/2 (hr)oral-H 
ADMET 

(Elimination) 
Half life after oral administration in 
humans 

≥4.00 

T1/2 (hr)oral-LA 
ADMET 

(Elimination) 

Half life after oral administration in 
laboratory animals (Mus musculus 
and/or Rattus norvegicus) 

≥1.60 

TD50 (μmol/kg)ip 
ADMET 
(Toxicity) 

Toxic dose at 50% after intraperitoneal 
administration 

≥416.69 

Vdss (L/kg)iv 
ADMET 

(Distribution) 
Volume of distribution at steady state 
after intravenous administration 

≥1.00 

a
 The cutoff values represent the conditions under which a compound/case was assigned to the group of 

the positive cases. 
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By definition, a time series is a sequence of data points, which are typically measured 
over an interval of time. In this context, some formulations based on the Box-Jenkins 
approach transform any series by subtracting the mean of the series from the value of 
each data point. Therefore, the deviation term, i.e., the difference between any value of 
a data point and the mean of the group (to which that data point belongs) is a Box-
Jenkins moving average.[57-58] The application of the aforementioned approach permits 
to create new molecular descriptors that can account for both the chemical structure, 
and diverse elements of the experimental condition/ontology cj under which 
compounds have been assayed. Thus, we can write an equation with the following 
form:  
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In Eq. 3, avgPqk(x)cj is the arithmetic mean of the Pqk(x)m descriptors for all the mth 
compounds in a subset n(cj). In this context, n(cj) is the number of compounds assayed 
by considering the same element of the experimental condition cj, being also annotated 
as positive. It is important to emphasize that Eq. 3 was applied to each element of cj. 
The subsequent equation can be written according to the following formalism: 

 

)4((x)(x)(x) jkkjk cavgPq-Pq=cPqΔ  

 
Here, Eq. 4 shows the deviation terms ΔPqk(x), which are the Box-Jenkins moving 
averages, and they take into account both the chemical structure of a compound and 
the biological target against which the compound was assayed. The training set was 
used to construct the mtk-QSBER model, containing 35212 cases, with 18347 positive 
and 16865 negative. The prediction (test) set was employed to validate the model, 
being formed by 11610 cases, 6052 positive and 5558 negative. Linear discriminant 
analysis (LDA) was used as pattern classification technique to find the best model, 
using a forward step-wise procedure as variable selection strategy. In order to 
accomplish this task, the program STATISTICA was used.[59] The mtk-QSBER model 
follows the expression of the form: 

)5(](x)×[+)( ∑ jk0ji cqPba=cBE Δ

 In Eq. 5, a0 is the constant, and bi represents the coefficients of the variables. It should 
be emphasized that the program STATISTICA takes the categorical variable BEi(cj), 
and transforms it into a real score that predict the propensity of a drug/ chemical i to 
exhibit certain biological effect under the experimental condition cj. After, that score is 
transformed to the predicted categorical value of BEi(cj). In order to analyze the quality 
and predictive power of the model, several statistical indices such as Wilks’s lambda 
(λ), chi-square (χ2), p-value sensitivity, specificity, accuracy, Matthews correlation 
coefficient (MCC), and the receiver operating characteristic (ROC) curves were 

calculated.
[60-62] The last five statistical indices were determined for both training and 

prediction (test) sets. 
 

Results and discussion 
Mtk-QSBER model 
With the aim of finding the most appropriate model, the principle of parsimony was 
applied. This means that the model exhibiting the highest statistical quality, but with few 
descriptors as possible was selected. In this sense, the best mtk-QSBER model found 
by us had five descriptors:  
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All the symbols of the molecular descriptors together with their corresponding 
definitions can be found in Table 2. The relatively small values of λ and p-level, and the 
large χ2, demonstrate the statistical quality of our mtk-QSBER model.[60]  
 
Table 2. List of molecular descriptors which entered in the final mtk-QSBER model. 

Descriptor Concept 

ΔPq2(R)me 
Deviation of the mutual probability quadratic index of order 2, weighted 
by the refractivity, depending on the molecular structure and the measure 
of biological effect 

ΔPq0(H)bt 
Deviation of the mutual probability quadratic index of order 0, weighted 
by the hydrophobicity, depending on the molecular structure and the 
biological target 

ΔPq2(H)ai 
Deviation of the mutual probability quadratic index of order 2, weighted 
by the hydrophobicity, depending on the molecular structure and the 
assay information

 

ΔPq2(PSA)tm 
Deviation of the mutual probability quadratic index of order 2, weighted 
by the polar surface area, depending on the molecular structure and the 
target mapping 

ΔPq5(PSA)c 
Deviation of the mutual probability quadratic index of order 5, weighted 
by the polar surface area, depending on the molecular structure and the 
level of curation of the experimental information 

 
The mtk-QSBER model correctly classified 33755 out of 35212 cases, with an 
accuracy of 95.86% in the training set, while in the prediction (test) set, 11098 out of 
11610 cases were correctly classified, with an accuracy of 95.59%. Specific details 
regarding the percentages of correct classification are depicted in Table 3, while other 
important information concerning the chemical and biological data of all molecules, as 
well as their respective classifications can be found in Supplementary Information 1 
(Suppl. Inf. 1) upon request to the authors. 
 

Table 3. Performance of the mtk-QSBER model. 

CLASSIFICATION
a,b

 
Training 

set 
Prediction 

set 

NCTotal 35212 11610 

NCPositive 18347 6052 

CCCPositive 17580 5791 

Sens (%)
c
 95.82 95.69 

NCNegative 16865 5558 

CCCNegative 16175 5307 

Spec (%)
d
 95.91 95.48 

Acc (%)
e
 95.86 95.59 

MCC
f
 0.917 0.912 

 a
NC – Number of cases. 

b
CCC – Correctly classified 

cases. 
c
Sensitivity. 

d
Specificity.

 e
Accuracy. 

f
Mathew's 

correlation coefficient. 
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Furthermore, the descriptors of type avgPqk(x)cj depending on the elements me, bt, ai, 
tm, and lc appear in Supplementary Information 2 (Suppl. Inf. 2) upon request to the 
authors. As final evidences of the quality and predictive power of the mtk-QSBER 
model, the areas under the ROC curves were determined, showing a value of 0.994 for 
both training and prediction sets (Fig. 2). This value demonstrates that our mtk-QSBER 
model is very different from a random classifier (area = 0.5) because the areas under 
the ROC curves are much larger. By analyzing Table 3, the ROC curves, as well as 
Suppl. Inf. 1, it is intuitive to see that the mtk-QSBER model developed here has an 
excellent performance, which is comparable with other reports of literature devoted to 
the use of mt-QSAR/mtk-QSBER models.[41-47] 
 

 
Fig. 2. Pictorial representation of the areas under the ROC curves. 

 
An interesting and peculiar detail of our mtk-QSBER model represented by Eq. 5 is that 
the molecular descriptors can be interpreted in terms of simple physicochemical and/or 
structural properties. First, it is necessary to emphasize that all these molecular 
descriptors based on mutual probabilities indicate that the global property of a molecule 
will be influenced by the atomic contributions expressed as quadratic functions of the 
physicochemical properties, depending on the number of times (occurrences) in which 
certain connections (bonds) appear in the whole molecule. For this reason, it is intuitive 
to see that the molecular descriptors involved in the construction of the mtk-QSBER 
model consider the atoms with their corresponding chemical environments. Bond 
multiplicity is also accounted for by these descriptors. Thus, ΔPq2(R)me describes the 
increment in the molecular refractivity, and consequently the increment in the molecular 
polarizability and/or size depending on both the chemical structure and the measure of 
the biological effect. This increment in the physicochemical property mentioned above 
should occur in regions where atoms are placed at topological distances equal to 2 
(two bonds between the atoms). The descriptor ΔPq0(H)bt represents the diminution of 
the global hydrophobicity, taking into consideration the structure of the molecules, and 
the biological targets against which they were tested. This last descriptor is constrained 
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by the variable ΔPq2(H)ai which expresses the increment of the hydrophobicity in 
regions where atoms are placed at topological distances equal to 2. Thus, ΔPq2(H)ai 
characterizes the structure of the molecules and the assay information, which means 
that the experiments exhibit different hydrophobicity requirements when they are 
carried out by assessing the affinity (binding), measuring effects of the compound on a 
pathway, system or whole organism (functional), or by determining ADMET properties 
that involving key metabolic enzymes, cells, tissues and even organisms.  
 
The increment in the hydrophobicity explained by ΔPq2(H)ai is consistent with the 
diminution of the polar surface area in the same molecular regions expressed by the 
descriptor ΔPq2(PSA)tm, which depends on the chemical structure and the target 
mapping, i.e., the degree of knowledge whether an assay is intended to a general type 
of biological target. Finally, the diminution of the polar surface area is confirmed by the 
descriptor ΔPq5(PSA)lc, which characterizes the molecular regions where any two 
atoms are placed at topological distances equal to 5. This descriptor provides 
information about the variation in the molecular structure, and the level of curation of 
the biological tests. 
 

Oritavancin. Prediction of multiple biological effects 
Until now, from the analysis of Eq. 5, tables, and supplementary materials, we have 
demonstrated that our mtk-QSBER model can integrate different kinds of chemical and 
biological data. In fact, in the dataset used to construct the model, there are many 
chemical families of compounds, where multiple biological effects associated with anti-
enterococci activities and ADMET profiles have been predicted by considering 
dissimilar experimental conditions cj. Anyway, the purpose here is to show the practical 
applicability of the mtk-QSBER model. In this sense, we performed simultaneous 
prediction of many biological effects for the investigational antibacterial drug oritavancin 
(Fig. 3), which was originally discovered and developed by Eli Lilly. After, The 
Medicines Company was running clinical trials for a possible new FDA (Food and Drug 
Administration) application in 2013.[63] Very recently, this antibacterial drug has been 
approved by FDA in 2014 for treatment of skin infections in the United States. 

 
Fig. 3. Chemical structure of oritavancin. 
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Oritavancin has exhibited high antibacterial activity against sensitive, drug resistant, 
MDR strains. More specifically, this antibacterial drug has been reported with values of 
MIC90 = 1.00 μg/ml (557.69 nM) against different strains belonging to the genus 
Enterococcus, containing dissimilar degrees of resistance against vancomycin.[64] The 
same value of has been reported against Enterococcus faecium exhibiting resistance 
to vancomycin and ciprofloxacin.[65] Other reports indicate that oritavancin showed 
MIC50 = 0.25 μg/ml (139.42 nM) and MIC90 = 0.50 μg/ml (278.85 nM) against diverse 
enterococci strains.[66] According to all these experimental evidences, if the cutoff 
values depicted in Table 1 are used, then, oritavancin should be classified as positive 
(active against enterococci).  
 
In the case of preclinical studies, experimental results show that the half-life (t1/2) of 
oritavancin in rats with venous catheter-associated infection was 10 hours.[67] At the 
same time, the t1/2 in neutropenic mouse infection model was of 33 hours, and the area 
under the curve (AUC) of 562.17 μg.hr/ml (313.52 μM.hr).[68] All these parameters were 
determined after intravenous administration in laboratory animals. We did not find data 
reported for oritavancin in healthy laboratory animals. However, by analyzing the 
experimental evidences, and the criteria regarding the use of cutoff values in Table 1, 
we can assume that with the large values of half-life times and AUC, oritavancin should 
be classified as positive (safe) in the case of the ADMET parameters mentioned above 
in healthy mice and rats. On the other hand, a review devoted to clinical studies 
indicated that after intravenous administration in healthy human volunteers, oritavancin 
had a value of volume of distribution at steady state (Vss) as large as 1.92 L/kg, with t1/2 
= 356 hours, and AUC = 1111 μg.hr/ml (619.60 μM.hr).[69] These experimental ADMET 
values clearly demonstrate that according to the cutoff values, the investigational 
antibacterial drug mentioned above can be considered as positive, i.e., oritavancin can 
be considered as a safe drug. 
 
Predictions of diverse biological effects of oritavancin were realized by using the mtk-
QSBER model, where 1311 different experimental conditions (combinations of the 
elements of cj) were considered. Results of these predictions are depicted in 
Supplementary Information 3 (Suppl. Inf. 3) upon request to the authors. These results 
suggest that oritavancin is very active against drug sensitive, and MDR strains 
belonging to different enterococci, including Enterococcus faecium and Enterococcus 
faecalis. Regarding the ADMET profiles in preclinical studies, the analysis of our 
predictions confirm that oritavancin exhibits desirable pharmacokinetic parameters, 
which strongly converge with the experimental reports. We could not find toxicological 
data for this drug, but the virtual assessment of several measures of toxicity such as 
LD50 and TD50 confirmed that the appearance of toxic effect depends on the breed of 
mice and/or rats, which were used in the assays.  
 
Finally, very useful information was extracted from the predictions realized for ADMET 
profiles in clinical studies. Thus, our analysis demonstrates the safety of oritavancin 
because this drug was predicted to have good absorption and bioavailability (including 
measures such as Papp, F(%), and AUC), with excellent volume of distribution, and 
good elimination. In terms of metabolism, the predictions indicate that oritavancin is not 
metabolized major cytochromes P450 (CYPs) such as CYP1A2, CYP2C19, CYP2C9, 
CYP2D6 and CYP3A4. By taking into account our predictions, only few CYPs and 
other metabolizing enzymes are inhibited by oritavancin. These theoretical results 
complement the experiments, which have demonstrated that the metabolism of the 
drug mentioned above is very limited.[70] Consequently, metabolism of oritavancin 
should be analyzed with caution. 
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Conclusion 
With the fast emergence of drug resistant enterococci strains, more innovative 
approaches for rational discovery of antibacterial agents are needed. As an alternative 
to overcome this problem, we have applied a chemoinformatic methodology through 
the generation of an mtk-QSBER model based on probabilistic quadratic indices. Our 
model was devoted to the virtual search for potent and safer anti-enterococci agents. 
The predictions of multiple biological effects performed over the antibacterial drug 
oritavancin demonstrate that the present mtk-QSBER model can serve as a guide for 
pharmaceutical and medicinal chemists through the different stages in drug discovery: 
from in vitro tests to preclinical and clinical studies. Our work also suggests the 
possibility of extending the present chemoinformatic methodology to integrate other 
pharmacological activities with dissimilar ADMET profiles. This constitutes a new 
horizon regarding the application of promising and innovative in silico tools in medicinal 
chemistry to support the design of new molecular entities with desired properties. 
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