

1st International Electronic Conference on Medicinal Chemistry

2-27 November 2015 chaired by Dr. Jean Jacques Vanden Eynde

Damien Hédou¹, Corinne Fruit¹, Anne-Sophie Casagrande ², Laurent Désiré ², Bertrand Leblond ², Laurent Meijer³, and Thierry Besson1^{1,*}

¹ Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, IRCOF, 1 rue Tesnière, 76821 Mont St Aignan Cedex, France

- ² Diaxonhit, 65 boulevard Masséna, Paris F-75013, France
- ³ Manros Therapeutics, Centre de Perharidy, 29680 Roscoff, France

* Corresponding author: thierry.besson@univ-rouen.fr

sponsored by

pharmaceuticals

Synthesis and biological evaluation of new thiazolo [5,4-f]quinazolines as serine/threonine kinases inhibitors

Graphical Abstract

Abstract: In our continuous effort aiming at preparing novel heterocyclic scaffolds able to modulate the activity of kinases in signal transduction, thiazolo[5,4-f]quinazolines were particularly studied. This presentation describes a novel strategy for a convenient structure-activity-relationship study towards five serine/threonine kinases (CDK1/cyclin B, CDK5/p25, DYRK1A, CK1, and GSK-3 α / β) involved in Alzheimer's disease.

The chemical highlight of this work was the use of Appel salt (4,5-dichloro-1,2,3dithiazolium chloride) for the conception of 6-amino-2-cyanobenzo[d]thiazole-7carboxylate derivatives as a versatile molecular platform from the 5-nitroanthranilic acid. Thus, introduction of various aliphatic, aromatic or amino substituents at position 8 was best achieved by one-pot DMFDMA-mediated cyclisation. Transformation of carbonitrile group into various chemical functions (*e.g.* imidate, ester, amidine...) allowed the efficient preparation of a library of novel thiazoloquinazoline derivatives. The first biological results have identified great and selective inhibition against DYRK1A and DYRK1B. The more active compounds are imidate derivatives exhibiting inhibitory activity in a subnanomolar range against DYRK1A.

Keywords: thiazolo[5,4-*f*]quinazolines; serine/threonine kinases; Appel salt; DMFDMA-mediated cyclisation

Introduction

Kinases are one of the largest enzyme families of the genome. More than 500 kinases play an important role in the regulation of most cellular processes. These enzymes are involved in all major diseases, including cancer, neurodegenerative disorders and cardiovascular diseases. Our research groups are mainly invested in the synthesis of C,N,S- or C,N,O-containing heterocyclic precursors of bioactive molecules able to modulate the activity of kinases in signal transduction, and especially Ser/Thr kinases (CDK5, GSK3, CLK1 and CK1) and dual-specificity kinases (DYRK family), selected for their strong implication in various human pathologies, especially in Alzheimer disease and cancer.

Among the DYRK kinases family, DYRK1A is certainly the most studied and is a novel, high-potential therapeutic target for pharmacological interventions seeking to modify the course of AD.

Martin, L.; Latypova, X.; Wilson, C.M.; Magnaudeix, A.; Perrin, M.-L.; Terro, F. Ageing Res. Rev. 2013, 12, 289–309.
Flajolet, M.; He, G.; Heiman, M.; Lin, A.; Nairn, A.C.; Greengard, P. Proc. Nat. Acad. Sci. USA 2007, 104, 4159–4164.
Weinmann, H.; Metternich, R. ChemBioChem 2005, 6, 455–459.

Introduction

In the course of our work, we described ten years ago the synthesis of the 8*H*-thiazolo[5,4-*f*]quinazolin-9-ones (**A**). Brief studies of their structure-activity relationships as dual CDK1/GSK-3 kinases inhibitors were described. More recently, the synthesis and the kinase inhibitory potency of various benzo-, pyrido- and pyrazinothieno[3,2-*d*]pyrimidines derivatives (**B**), have been published. Kinase inhibition of the compounds was evaluated on Ser/Thr kinases (CDK5, GSK3, DYRK1A, CLK1 and CK1) selected for their strong implications in various human pathologies, especially in AD.

X = NH or OY = CH or NHZ = CH or NH

 R^1 = Alkyl or aryl R^2 = Alkyl or aryl

Previous works

Eur. J. Med. Chem. **2008**, *43*, 1469. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 3419. *Tetrahedron Lett.* **2003**, *44*, 4455. *Eur. J. Med. Chem.* **2015**, 92, 124-134. *Bioorg. Med. Chem. Lett.* **2013**, 23, 6784-6788. *Eur. J. Med. Chem.* **2013**, *59*, 283-295. *Eur. J. Med. Chem.* **2012**, *58*, 171-183.

Introduction

Pursuing our studies, we conceived new series of thiazolo[5,4-*f*]quinazolines substituted in position 4 of the pyrimidine ring by an aromatic amine and by carboximidamide groups in position 2 of the thiazole moiety (see general formula **C**).

The aromatic amine groups linked to the main thiazoloquinazoline structure were selected because of their frequent presence in drugs or drug candidates.

For a complete review see: Harris, C.S.; Hennequin, L.; Morgentin, R.; Pasquet, G. Synthesis and functionnalization of 4-substituted quinazolines as kinases templates. In *Targets in Heterocyclic Systems—Chemistry and Properties*; Attanasi, O.A., Spinelli, D., Eds.; Italian Society of Chemistry: Roma, Italia, 2010; Volume 14, pp. 315–350.

Results and discussion

General retrosynthetic pathways envisioned for this work.

First route

Second route

Molecules 2014, 19, 15411-15439 & Molecules 2014, 19,. 15546-15571

First Synthetic route experimented for the access to the target compounds (series 7–10).

1st International Electronic Conference on Medicinal Chemistry 2-27 November 2015

sponsors: MDP

8

Multistep synthesis of polyfunctionalized benzothiazole 16.

Despite its effectiveness, the synthesis presented above has some limitations.

- A) Each modification of the substituent in N³ of the pyrimidine ring generates three intermediates for which biological significance is not established.
- B) Reduction and bromination steps require being adapted to the aromatic substituent of the intracyclic N³-nitrogen atom.
- C) It implied synthesis of a versatile platform:

Reagents and conditions: (a) Boc_2O , DMAP, Et_3N , CH_2CI_2 , r.t., 4 h; (b), HCO_2NH_4 , Pd.C, EtOH, 78 °C (μ w), 30 min; (c) Br_2 , AcOH, CH_2CI_2 , r.t., 2.5 h; (d) Appel salt, Py. (2 eq), CH_2CI_2 , r.t., 4 h; (e) AcOH, 118 °C (μ w), 2 h; (f) Cul, Py., 130 °C (μ w), 20 min.

This molecular system was designed as an efficient precursor of various target molecules.

Possible transformations of benzothiazole **16** as a versatile molecular platform.

Molecules 2014, 19, 15411-15439 & Molecules 2014, 19,. 15546-15571

Synthesis of thiazolo[5,4-*f*]quinazoline-2-carbonitriles (7–10) and their derivatives *via* transformation of the carbonitrile functions in carboxamidines (a–g), amides (h) or imidates (i).

Reagents and conditions: (a) DMFDMA, DMF, 70 °C (μ w), 2 min, 86%; (b) aniline (1.5 eq), AcOH, 118 °C (μ w), 2 min, 99% (**7**)/45 min, 95% (**8**)/30 min, 70% (**9**)/10 min, 77% (**10**); (c) amines, THF, r.t., 12 h, for yields see Table 1; (d) NaOH_{aq} (2.5 N), butanol, 117 °C (μ w), 30 min, 98% (**7h**)/91% (**8h**)/71% (**9h**)/98% (**10h**); (e) NaOMe (0.5M in MeOH), MeOH, 65 °C (μ w), 30 min, 82% (**7i**)/92% (**8i**)/94% (**9i**)/98% (**10i**).

Rı	R2	Compound	Yield ^a (%)	Rı	R 2	Compound	Yield ^a (%)
	st _N ∕ N	7a	41		² ² −N N	9a	85
		7ь	43		^{_2} ^ℓ _H ⁻² ^ℓ	9b	72
~ 0	Me A	7c	47	Br	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9c	68
\square	л	7d	53	F	л Д Д	9d	64
	st h~n~	7e	50		~ ^N ~K	9e	86
	ζ, μ, s	7 f	28		<u>ک</u> ل ب	9f	68
	N_5 ² , I	7g	67		"25" N~	9g	40
R1	R ₂	Compound	Yield ^a (%)	R1	R ₂	Compound	Yield ^a (%)
R ₁	R2	Compound 8a	Yield ^a (%) 41	R1	R2	Compound 10a	Yield ^a (%) 71
R1		Compound 8a 8b	Yield ^a (%) 41 34	R ₁	\mathbb{R}_2	Compound 10a 10b	Yield ^a (%) 71 82
R1	$\begin{array}{c} \mathbf{R}_{2} \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & $	Compound Sa Sb Sc	Yield ^a (%) 41 34 48	R1	R_2	Compound 10a 10b 10c	Yield ^a (%) 71 82 69
R1	$\begin{array}{c} R_{2} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	Compound 8a 8b 8c 8d	Yield ^a (%) 41 34 48 30	R1	$\begin{array}{c} R_2 \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Compound 10a 10b 10c 10d	Yield ^a (%) 71 82 69 50
Rl	$\begin{array}{c c} R_2 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	Compound Sa Sb Sc Sd Se	Yield ^a (%) 41 34 48 30 66	R1	$\begin{array}{c c} R_2 \\ \hline \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	Compound 10a 10b 10c 10d 10e	Yield ^a (%) 71 82 69 50 50
	$\begin{array}{c c} R_2 \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	Compound Sa Sb Sc Sd Se Sf	Yield ^a (%) 41 34 48 30 66 21	R1	$\begin{array}{c c} R_2 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	Compound 10a 10b 10c 10d 10e 10f	Yield ^a (%) 71 82 69 50 50 50 69

Chemical structures and yields obtained for the synthesis of the four series (7a-g-10a-g)

a Isolated vield: b Not prepared.

Compounds of series 7 (7, 7a-i), series 8 (8, 8a-i), series 9 (9, 9a-i) and series 10 (10, 10a-i) were tested on four different *in vitro* kinase assays (CDK5/p25 (cyclindependent kinase), CK1 δ / ϵ (casein kinase 1), GSK3 α / β (Glycogen Synthase Kinase 3) and DYRK1A (dual-specificity, tyrosine phosphorylation regulated kinase) to evaluate their inhibition potency [19-23]. These four kinases are all involved in Alzheimer's disease (AD), a multi-kinase inhibitor able to target two or three of them could be quite desirable. This is linked to the fact that it is still not known whether any of these four kinases plays a more prominent role in Alzheimer's disease than the others and, consequently, which one should therefore preferably be targeted. In pathological situations such kinases are overexpressed and-activated, this fact justify the interest of multi-target-directed ligands (MTDLs) while complete inhibition is likely to be detrimental.

Molecules 2014, 19, 15411-15439 & Molecules 2014, 19,. 15546-15571

Compound	DYRK1A	CK1	CDK5	GSK3	Compound	DYRK1A	CK1	CDK5	GSK3
7	>10	>10	>10	≥10	9	>10	>10	>10	>10
7a	>10	>10	>10	1.10	9a	>10	>10	>10	1.8
7b	>10	>10	>10	2.50	9b	>10	>10	>10	0.53
7c	>10	>10	>10	2.00	9c	>10	>10	>10	2.20
7d	>10	>10	>10	>10	9d	>10	>10	>10	0.95
7e	4.00	>10	>10	1.30	9e	>10	>10	>10	2.10
7 f	8.00	>10	>10	2.00	9f	>10	>10	>10	1.80
7g	0.70	>10	>10	1.10	9g	0.27	>10	>10	0.60
7 h	0.50	>10	>10	0.30	9h	0.67	>10	>10	0.13
7i	0.040	>10	>10	0.20	9i	0.050	>10	>10	0.16
8	>10	>10	>10	≥10	10	>10	>10	>10	>10
8a	2.20	>10	>10	0.97	10a	>10	>10	>10	3.50
8b	2.00	>10	>10	1.10	10b	>10	>10	>10	1.40
8c	1.10	>10	>10	0.36	10c	>10	>10	>10	2.50
8d	1.05	>10	>10	0.25	10d	>10	>10	>10	3.00
8e	6.50	>10	>10	0.80	10e	>10	>10	>10	7.00
8f	>10	>10	>10	2.00	10f	>10	>10	>10	>10
8g	_d	-	-	-	10g	6.50	>10	>10	7.20
8h	0.80	>10	>10	0.77	10h	1.60	>10	>10	0.66
8i	0.047	>10	>10	0.66	10i	0.25	>10	>10	0.69

Kinase inhibitory activity ^{a,b,c} of the four thiazolo[5,4-*f*]quinazoline series (7a–i–10a–i)

^a IC50 values are reported in µM. The most significant results are presented in bold; ^b Kinases activities were assayed in triplicate. Typically, the standard deviation of single data points was below 10%; ^c Harmine (IC50 in µM): DYRK1A: 0.029; CK1: 1.50; CDK5 and GSK3α/β: >10 [27]; Leucettine L41 (IC50 in μM): DYRK1A: 0.040; CK1: > 10; CDK5: > 10 and GSK3α/β: 0.040 [27]; ^d Not determined. *Molecules* **2014**, *19*, 15411-15439 & *Molecules* **2014**, *19*, 15546-15571

The two most interesting series are 8 and 9

Series **8** is really promising with micromolar range activities against DYRK1A (6.5 μ M < IC₅₀ < 1.05 μ M) and submicromolar IC₅₀ values against GSK3 α/β (0.25 μ M < IC₅₀ < 0.97 μ M).

The most active molecules prepared in this study were series **g**–**i** of the four family of thiazolo[5,4-*f*]quinazolines (**7**–**10**) with spectacular submicromolar activities against DYRK1A (0.04 μ M < IC₅₀ < 0.70 μ M) and GSK3 α / β kinases (0.16 μ M < IC₅₀ < 0.77 μ M) with a marked preference for the first one, respectively.

The DYRK1A IC₅₀ values obtained for **7i**, **8i** and **9i** are situated in the doubledigit nanomolar range (40, 47 and 50 nM, respectively) demonstrating that small-sized groups linked to the thiazole ring were able to induce a dramatic enhancement of the inhibitory activity against DYRK1A.

Molecules 2014, 19, 15411-15439 & Molecules 2014, 19,. 15546-15571

A methyl 9-(arylamino)thiazolo[5,4-*f*]quinazoline-2-carbimidate derivative library with highly potent DYRK1A/1B kinase inhibitory activities

The previous part of this showed that lead compounds possess a methylcarbimidate function in position 2 of the thiazole ring, associated with an *N*-aryl substituent on position 9 of the thiazolo[5,4-f]quinazoline scaffold (compounds **C**).

Methyl carbimidate function : best affinity for DYRK1A

Compound series ${\bf C}$

The overall potential therapeutic interest of these compounds encouraged us to extend this series of thiazolo[5,4-*f*]quinazolines by substituting the position 4 of the pyrimidine ring with various aromatic amines and by leaving a methyl carbimidate group in position 2 of the thiazole moiety.

Molecules **2014**, *19*, 15411-15439 & Molecules **2014**, *19*, 15546-15571

Amine (R-NH ₂)	Compound	Yield (%) ^a	Time (min)	Compound	Yield (%) ^a
4-methoxyaniline	4 a	99	2	7 a	82
3,4-(methylenedioxy)aniline	4b	95	45	7 b	92
1,4-benzodioxan-6-amine	4c	33	15	7c	80
2,3-dihydro-1-benzofuran-5-amine	4d	95	5	7 d	66
3,4-dimethoxyaniline	4e	74	15	7e	89
2,4-dimethoxyaniline	4 f	59	2	7 f	71
3,5-dimethoxyaniline	4g	98	7	7 g	58
3-nitro-4-methoxyaniline	4h	61	20	7 h	59
4-aminophenol	4i	80	5	7i	81
5-amino-2-methoxyphenol	4j	54	5	7 j	99
4-amino-2-nitrophenol	4 k	60	15	$7\mathbf{k}$	34
3,4,5-trimethoxyaniline	41	85	5	71	94
4-chloroaniline	5a	89	10	8 a	62
3-chloroaniline	5b	74	20	8 b	78
2,4-dichloroaniline	5c	32	50	8c	81
3,4-dichloroaniline	5d	42	20	8d	45
4-fluoroaniline	5e	92	5	8e	77
4-bromo-2-fluoroaniline	5f	78	30	8 f	94
3-chloro-4-fluoroaniline	5g	82	10	8g	98
4-chloro-2-fluoroaniline	5h	56	20	8h	58
2-fluoro-4-methoxyaniline	5i	85	5	8i	82
4-amino-2-fluorophenol	5j	58	10	8j	70
2,4-difluoroaniline	5k	68	15	8k	71
4-aminobenzotrifluoride	51	61	15	81	53
aniline	6а	67	5	9a	52
4-toluidine	6b	64	2	9b	88
4-tert-butylaniline	6c	99	5	9c	69
3-ethynylaniline	6d	84	15	9d	68
4-aminobenzonitrile	6e	36	20	9e	52
3-aminobenzonitrile	6f	80	10	9f	33
6-aminobenzimidazole	6g	98	10	9g	57
N,N-dimethyl-p-phenylene-diamine	6h	25	15	9h	94
4-(pyrrolidin-1-yl)aniline	<u>6i</u>	48	5	9i	75

^a Isolated yields.

Reagents and conditions: (a) DMF/DMA, DMF, 70 °C (μ w), 2 min, 86%; (b) aniline (1.5 equiv.), AcOH, 118 °C (μ w), for time and yields see Table 1; (c) NaOMe (0.5 M in MeOH), MeOH, 65 °C (μ w), 30 min, for yields see Table.

Molecules 2014, 19, 15411-15439 & Molecules 2014, 19,. 15546-15571

Synthesis of ⁹*N*-methylated derivatives of **7a**, **7c** and **7e**.

Reagents and conditions: (**a**) ICH₃, NaH, DMF, 0 °C then r.t., 2 h, 60% (**10a**); 74% (**10b**); 30% (**10c**); (**b**) NaOMe (0.5 M in MeOH), MeOH, 65 °C (μw), 30 min, 93% (**11a**); 73% (**11b**); 66% (**11c**).

Molecules 2014, 19, 15411-15439 & Molecules 2014, 19,. 15546-15571

Synthesis of ethyl, isopropyl and benzyl carbimidates **12a–c** and methyl carboxylate **13** from carbonitrile **7b**.

Reagents and conditions: (**a**) RONa (0.5–1.0 M in ROH), ROH, 80–100 °C (μw), 30 min–2 h, R = Et (**12a**), *i*-Pr (**12b**) and Bn (**12c**); (**b**) MeOH-H₂O/TFA (0.1%) (6:4, v/v), r.t., 12 h.

Molecules 2014, 19, 15411-15439 & Molecules 2014, 19,. 15546-15571

Note concerning microwave-assisted methods used in this work

Microwave heating in this work was mainly performed at atmospheric pressure in a controlled multimode cavity with a microwave power delivery system ranging from 0 to 1200 W (Milestone). Open vessel microwave experiments have some advantages, such as the possibility of easier scale-up and the possibility to use current laboratory glassware.

Our choice was also guided by the tendency of pressure to accumulate when a product as DMF/DMA was heated into pressurized vials, especially under microwaves.

In the main part of reactions studied, 600–800 W irradiation was enough to efficiently reach the programmed temperature. This parameter was mainly monitored via a contactless-infrared pyrometer, which was calibrated in control experiments with a fiber-optic contact thermometer.

Amine in Position 9 (R-NH2)	Compound	DYRK1A IC50 (nM)	DYRK1B IC50 (nM)
4-methoxyaniline	7a	13.08 °	19.22
3,4-(methylenedioxy)aniline	7 b	1.65 °	4.20
1,4-benzodioxan-6-amine	7 c	8.00	17.60
2,3-dihydro-1-benzofuran-5-amine	7 d	$1 < IC_{50} < 1000$	_ b
3,4-dimethoxyaniline	7e	128.80	160.6
2,4-dimethoxyaniline	7 f	9.53	11.13
3,5-dimethoxyaniline	7 g	298.90	530.90
3-nitro-4-methoxyaniline	7 h	123.50	599.80
4-aminophenol	7i	$1 < IC_{50} < 1000$	_ b
5-amino-2-methoxyphenol	7j	$1 \le IC_{50} \le 1000$	- ^b
4-amino-2-nitrophenol	7 k	4.91	5.68
3,4,5-trimethoxyaniline	71	436.10	485.80
4-chloroaniline	8a	1.13	4.74
3-chloroaniline	8b	13.64	18.78
2,4-dichloroaniline	8c (EHT 5372)	0.22	0.28
3,4-dichloroaniline	8d	66.82	99.34
4-fluoroaniline	8e	6.06	9.64
4-bromo-2-fluoroaniline	8f	3.6 °	6.55
3-chloro-4-fluoroaniline	8g	$1 \le IC_{50} \le 1000$	- ^b
4-chloro-2-fluoroaniline	8h (EHT 6840)	0.99	1.63
2-fluoro-4-methoxyaniline	8i (EHT 1610)	0.36	0.59
4-amino-2-fluorophenol	8j	8.63	11.00
2,4-difluoroaniline	8k (EHT 9851)	0.94	1.07
4-aminobenzotrifluoride	81	54.84	186.40
aniline	9a	1.81	3.48
4-toluidine	9b (EHT 3356)	0.98	2.83
4-tert-butylaniline	9c	39.03	93.84
3-ethynylaniline	9d	40.76	46.29
4-aminobenzonitrile	9e	3.89	7.69
3-aminobenzonitrile	9f	42.70	71.98
6-aminobenzimidazole	9g	4.44	4.65
N,N-dimethyl-p-phenylene-diamine	9h	35.64	64.28
4-(pyrrolidin-1-yl)aniline	9i	n.t.ª	n.t.
4-methoxyaniline	11a	79.85	84.94
3,4-dimethoxyaniline	11b	3768.00	4458.00
1,4-benzodioxan-6-amine	11c	$1 < IC_{50} < 1000$	- 0
3,4-(methylenedioxy)aniline	12a	6.02	7.72
3,4-(methylenedioxy)aniline	12b	124.7	217.80
3,4-(methylenedioxy)aniline	12c	33.93	37.34
3,4-(methylenedioxy)aniline	13	$1 < IC_{50} < 1000$	- "
harmine		21.83	27.87
TG003		24.01	34.39
NCGC-00189310		2.20	20.57
leucettine L41		7.60	37.00

^a IC₅₀ values are reported in nM. The most significant results are presented in bold; ^b Not determined; ^c Compared to our previous studies (see data given in Scheme 1 for 7a, 7b and 8f) the Reaction Biology Corporation DYRK1A kinase assay was about ten times more sensitive and new values given for these three compounds were found closer to the nanomolar range; ^d Not tested.

1st International Electronic Conference on Medicinal Chemistry 2-27 November 2015 DYRK1A and DYRK1B kinase inhibitory activity of the four methyl thiazolo[5,4f]quinazoline carbimidate series (**7**, **8**, **9**, and **11**); ethyl, isopropyl and benzyl carbimidates (**12a–c**) and methyl carboxylate (**13**).

NCGC-00189310

sponsors.

Leucettine L41

Structure of the DYRK1A/1B reference compounds used in this study.

Molecules **2014**, *19*, 15411-15439 & *Molecules* **2014**, *19*, 15546-15571

Structures and DYRK1A/1B IC₅₀ values of the five lead compounds identified in this study.

Foucourt A.; Hédou, D.; Dubouilh-Benard, C.; Girard, A.; Taverne, T.; Désiré, L.; Casagrande, A.-S.; Leblond, B.; Loaëc, N.; Meijer, L.; Besson, T. *Molecules* **2014**, *19*, 15411-15439 & *Molecules* **2014**, *19*, 15546-15571 Design and Synthesis of Thiazolo[5,4-f]quinazolines as DYRK1A Inhibitors, Part I and II.

ClogP were calculated with Chemdraw V12.0.

IC₅₀ of EHT 5372 on the hits of a selectivity profile performed on a total of 339 kinases.

	IC ₅₀ (nM)	DYRK1A	DYRK1B	DYRK2	DYRK3	DYRK4	GSK3α	CLK1	CLK2	CLK3	CLK4	GSK3β
	EHT 5372	0.22	0.28	10.8	93.2	n.i.	7.44	22.8	88.8	>10000	59	221
In collaboration with:	Selectivity ratio	1	1.28	49.1	423.6	nd	33.8	103.6	403.6	nd	268.1	1004.5
diaxonhit	IC ₅₀ (nM)	DYRK1A	DYRK1B									
	Harmine	21.8	27.8									
Specialty Diagnostic Solutions	TG003	24.01	34.39									
	L41	7.60	37									
	EGCG	11130	1244									
												Ne

IC₅₀ < 1 nM</p>

Partial activity

 $-7 \text{ nM} < \text{IC}_{50} < 200 \text{ nM}$

EHT 5372 inhibits **DYRK1A-induced** Tau phosphorylation at multiple AD-relevant sites in biochemical and cellular assays. EHT 5372 also normalizes both Aβ-induced Tau phosphorylation and DYRK1A-stimulated Aß production.

A Novel DYRK1A (Dual Specificity Tyrosine Phosphorylation-Regulated Kinase 1A) Inhibitor for the Treatment of Alzheimer's Disease: Effect on Tau and Amyloid Pathologies in Vitro.

Courtadeur, S.; Benyamine, H.; Delalonde, L.; de Oliveira, C.; Leblond, B.; Foucourt, A.; Besson, T.; Casagrande, A.-S.; Taverne, T.; Girard, A.; Pando, M.P.; Désiré, L. J. Neurochem. 2015, 133, 440-451.

1st International Electronic Conference on Medicinal Chemistry 2-27 November 2015

The kinome activity map for EHT 5372 with identified hits highlighted MDP sponsors: pharmaceuticals

DYRK1A DYRK1A DYRK1B DYRK2

Haspin

GSK38

GSK3a

Results concerning EHT 5372 and other derivatives on the inhibition of DYR1B/Mirk and quiescence of cancer cells :

Dr Eileen FRIEDMAN Department of Obstetrics and Gynecology, Upstate Medical University, Syracuse, N.Y., USA

Genes & Cancer, **2014**, 5, 337 Genes & Cancer, **2014**, 5, 201 Genes & Cancer, **2014**, 5, 22 Int. J. Cancer **2013**, 132, 2258 Cancers **2010**, 2, 1492.

Results concerning EHT 1610 and DYRK1A :

Prof John CRISPINO Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA

DYRK1A controls the transition from proliferation to quiescence during lymphoid development by destabilizing Cyclin D3. Thompson, B.; Bhansali, R.; Diebold, L.; Cook, D. E.; Stolzenburg, L.;Casagrande, A. –S.; Besson, T.; Leblond, B.; Desire, L.; Malinge, S.; Crispino, J. D. *J. Exp. Med.* **2015**, *212*, 723

Conclusion

These results confirm that the thiazolo[5,4-*f*]quinazoline scaffold has a great potential in the development of novel and highly potent dual inhibitors of DYRK1A and DYRK1B kinases that are involved in many neurodegenerative diseases (AD and other tauopathies), in genetic disease (DS), in oncology, and in diseases involving abnormal pre-mRNA splicing.

Acknowledgments

MINISTÈRE DE L'ÉDUCATION NATIONALE, DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE

