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Abstract: Partial discharges are ionization processes inside or on the surface of dielectrics
that can unveil insulation problems in electrical equipment. The charge accumulated is
released under certain environmental and voltage conditions attacking the insulation both
physically and chemically. The final consequence of a continuous occurrence of these
events is the breakdown of the dielectric. The electron avalanche provokes a derivative of
the electric field creating an electromagnetic impulse that can be detected with antennas.
The localization of the source helps in the identification of the piece of equipment that has
to be decommissioned. This can be done by deploying antennas and calculating the time
difference of arrival (TDOA) of the electromagnetic pulses. However, small errors in this
parameter can lead to great displacements of the calculated position of the source. Usually,
four antennas are used to find the source but the array has to be correctly deployed to have
minimal errors in the localization. This paper demonstrates by simulation and experimentally
that the most common layouts are not the best options and proposes a simple antenna layout
to reduce the systematic error in the TDOA calculation due to the positions of the antennas.
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1. Introduction

Measuring partial discharges (PD) helps in early warning systems to detect which piece of high
voltage equipment is prone to failure. This type of events emit energy in radio-frequency bands so
they can be detected with antennas. Moreover, if an array of antennas is strategically placed nearby the
asset, the PD source can be located accurately. There are many references devoted to the localization
of partial discharges inside transformers and GIS substations. In most cases, the source is surrounded
by the antennas, so the location is straightforward and the accuracy is excellent. The difficulties appear
when the source is outside the polygon created by the four antennas, then, the uncertainty in the possible
solutions is notably higher. There is an interesting paper by Moore et al. that studies the location
performance of two configurations forming a square and a star determining that the first one is the best
option, [1]. There is also a mathematical study in [2] that concludes with some evident hints about how
to place the antennas and test them in a square layout. Again, the square configuration is used in [3] and
[4]. The authors in [4] further included a trapezoidal layout and tested the arrays in a 400 kV substation
obtaining an experimental measure of the statistical error. However, the sources were included inside
the polygon of the antenna layout so their analysis is different from what it is proposed in this paper. In
our study we propose a trapezoidal layout forcing the PD source to be outside the polygon defined by
the array. We show both, through a realistic modelling of different antenna deployments that takes into
account errors in the measurement of the TDOA and by experimental measurements, that a trapezoidal
array improves the performance of a squared deployment, having better accuracy and less dispersion
than other configurations.

2. Finding the Radio-Frequency Source

The speed of propagation, c, the distance, Di and the time ti that takes a pulse in Ps = (xs, ys, zs) to
propagate in free space to the antenna i in Pi = (xi, yi, zi) is given by:

Di = c · ti =
√

(xi − xs)2 + (yi − ys)2 + (zi − zs)2 = ‖Pi −Ps‖ (1)

Unfortunately, the absolute time of arrival is not known and it is necessary to measure the time difference
of arrival to every pair of antennas to find the source position. The equation is then changed to:

Dij = c(ti − tj) = ‖Pi −Ps‖ − ‖Pj −Ps‖ (2)

The exact determination of the TDOA, ti − tj , is key to have an accurate position of the source and
small variations in this parameter can induce a large uncertainty, [1].

There are multiple factors that can lead both to uncertainties or even errors in the TDOA. These factors
have different origins that we have classified into three categories: due to the nature of the signal, due
to the position of the antennas and due to the measuring procedure. This paper takes into account two
of these three factors, the first one is how the antenna geometry affects the location performance and
the second accounts for measurement errors that are generated under different circumstances such as the
antennas position and their electrical response.

Our work assumes that there is a strong line-of-sight and that reflections are attenuated and delayed
in such a way that they do not interfere in the free-space assumption and all other error sources will be
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encompassed in a single error given by the sampling time of the PD signal. Then, we will show that
choosing an appropriate layout can reduce the uncertainty in the location of the source.

3. Antenna Deployment and Sensitivity to Measurement Errors

Finding the sensitivity to the different measurement error sources in the TDOA analytically in
Equation (2) to obtain all possible solutions to the source position is a difficult task. The proposed
approach assumes an error of one time sample, |εij| = Ts, sequentially in all six TDOA giving a total of
36 = 729 possible solutions. Larger errors are not considered because the cluster of positions would be
too vast and set far from the actual location.

Therefore, Equation (2) would be changed to D′ij − ‖Pi − P′s‖ + ‖Pj − P′s‖ = 0 where D′ij is the
distance including the error ±εij and P′s is the position of the source with the error in the TDOA. Let
P̂s = (x̂s, ŷs, ẑs) be the estimation of its position, setting the same equation for all pairs of antennas and
summing all equations together gives:

f(x̂s, ŷs, ẑs) =
L−1∑
i=1

L∑
j=i+1

(
D′ij − ‖Pi − P̂s‖+ ‖Pj − P̂s‖

)2
(3)

where L is the number of antennas and the distance differences have been squared to consider only
positive values in the objective function. Equation (3) would be 0 for the correct estimation of P̂s, so any
method that minimizes f(x̂s, ŷs, ẑs) would give the position of the source. Particle swarm optimization
(PSO) is a feasible option as shown in [5].
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(a) Square array
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(b) Star array
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(c) Trapezoidal array

Figure 1. Three scenarios to test the performance of the antenna arrays.

The behavior of three different antenna arrays were tested for three positions of the source at two
distances with the x component at x = 1.5 m and x = 5.5 m, Figure 1. In every scenario the PSO
algorithm is run to obtain all possible solutions when there is an error of ±εij in the TDOA. Then, the
solutions are analyzed statistically calculating the distance of the mean value in X and Y axis to the
actual position of the source as a measure of the error in the localization; and the standard deviation of
the distance of all possible values to the actual position, as a measure of the dispersion of the data. All
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antennas are in the same plane so the component z is not relevant in this study and the paper focuses the
results in the plane XY . To have an adequate resolution in the Z axis, at least one of the antennas should
be placed in a different plane.

Figure 2 shows simulation results with the source in x = 1.5 m. The triangle (4) is the position of
the source and the inverted triangle (5) is the position of the mean of all data. The first row corresponds
to the source in the position 1 of Figure 1 and the second row to the position 2. The position 3 was also
simulated but it is not shown.

Table 1 contains the statistical measurements for all possible positions on Figure 1. The table on the
left corresponds to x = 1.5 m and the table on the right to x = 5.5 m. Every row corresponds to positions
1, 2 and 3, respectively. Notice that the closest distances of the mean values in components x and y to the
source corresponds to the proposed trapezoidal configuration. This configuration also shows the lowest
dispersion in the data.
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Figure 2. Simulation results for three antenna layouts and positions 1 and 2.

Table 1. Measurements of the error in the location and dispersion of data for the three
antenna configurations. Left table x = 1.5 m and right table x = 5.5 m.

Square Star Trapz

Pos 1
Mean 6.09 0.64 0.34
Std 10.54 6.25 0.28

Pos 2
Mean 0.15 2.49 0.01
Std 0.66 3.94 0.25

Pos 3
Mean 3.27 6.61 1.53
Std 7.90 10.98 3.10

Square Star Trapz

Pos 1
Mean 33.93 10.72 1.57
Std 40.30 27.87 1.67

Pos 2
Mean 5.39 6.04 0.71
Std 11.04 13.06 1.00

Pos 3
Mean 3.45 7.16 0.23
Std 7.93 10.16 1.61
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4. Experimental Study

The three antenna array layouts were tested in a laboratory. The antennas are monopoles 10 cm long
which are omnidirectional and have good response in the range of frequencies where partial discharges
emit [6]. All coaxial cables have the same length and are connected to an oscilloscope with four channels.

The partial discharge source is created using a 25 kV high-voltage cable connected to a voltage
controlled transformer. A copper wire is bent to form a ring around the high-voltage cable and then,
connected to ground. The resulting test object will have a high electric field divergence in that loop that
will be able to create surface partial discharges.

The sampling frequency used in this paper is 5 GS/s, which corresponds to a sampling time Ts =

|εij| = 200 ps. Differences in the TDOA below this time resolution will not be detected. Considering
that the speed of propagation is the speed of light, c, the resolution in distance is 6 cm. Interpolation
can help to artificially increase the resolution and improve the results [1,5], so the sampling time is
increased tenfold using cubic splines. All measurements consist of a set of 500 partial discharges. The
time differences of arrival are calculated using a cumulative energy method with negative slope, [5], and
then, all TDOA greater ±εij , one sample, are discarded to have the same conditions as in the previous
section. The remaining TDOA are used to locate the source using PSO.

Experimental measurements were taken for positions 1 and 2 with x = 1.5 m, Figure 3, giving
the error and dispersion results of Table 2. The best results are again obtained with the trapezoidal
configuration which permits a more accurate positioning of the source with less dispersion. Only in
position 1 has the star layout a slightly better dispersion. These results are better than those shown
in Table 1 because in the simulations all possible deviations in the TDOA are analyzed while in the
experimental results there is a limited number of cases; then, the dispersion in the simulations is higher
than in the experimental results.
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Figure 3. Experimental results for three layouts and position 1 and 2.
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Table 2. Error in location and dispersion in experimental data. Left, position 1 and right,
position 2.

Square Star Trapz

Mean 3,35 0,69 0,27
Std 8,54 0,21 0,23

Square Star Trapz

Mean 0,25 0,35 0,14
Std 0,17 0,48 0,10

5. Conclusions

Choosing an adequate layout of antennas can help in the localization of PD sources. This paper shows
that the trapezoidal configuration can reduce the dispersion of the possible solutions of the source better
than other configurations such as a square or a star. Additionally, the average value of all data in the
components x and y is also closer to the actual position of the source. If the partial discharge source is
far from the antenna array, the performance of the trapezoidal configuration is even better which is very
appropriate when measuring this type of events in open air substations. The study in the axis Z has been
omitted because all antennas are in the same plane; at least one of the antennas have to be placed outside
the horizontal plane to have sufficient resolution in height if localization is space is intended.

Acknowledgments

Tests were done in the High-Voltage Research and Test Laboratory (LINEALT) at Universidad Carlos
III de Madrid.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Moore, P.; Portugués, I.; Glover, I. Radiometric location of partial discharge sources on energized
high-Voltage plant. Power Delivery, IEEE Transactions on 2005, 20, 2264–2272.

2. He, J.; Li, M.; Chen, G.; Wang, Z. Error Analysis and Antenna Array Placement Optimization of
Localization System for Partial Discharge in Substation. Przeglad Elektrotechniczny 2014, R. 90,
nr 7, 104–107.

3. Hou, H.; Sheng, G.; Jiang, X. Localization Algorithm for the PD Source in Substation Based
on L-Shaped Antenna Array Signal Processing. Power Delivery, IEEE Transactions on 2015,
30, 472–479.

4. Stewart, B.; Nesbitt, A.; Hall, L. Triangulation and 3D location estimation of RFI and Partial
Discharge sources within a 400kV substation. Electrical Insulation Conference, 2009. EIC 2009.
IEEE, 2009, pp. 164–168.

5. Robles, G.; Fresno, J.M.; Martínez-Tarifa, J.M. Separation of Radio-Frequency Sources and
Localization of Partial Discharges in Noisy Environments. Sensors 2015, 15, 9882.



7

6. Robles, G.; Sánchez-Fernández, M.; Albarracín Sánchez, R.; Rojas-Moreno, M.; Rajo-Iglesias,
E.; Martínez-Tarifa, J. Antenna Parametrization for the Detection of Partial Discharges.
Instrumentation and Measurement, IEEE Transactions on 2013, 62, 932–941.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Finding the Radio-Frequency Source
	Antenna Deployment and Sensitivity to Measurement Errors
	Experimental Study
	Conclusions

