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Abstract: Sparse autoencoders are used to extract important features that can be used
in classification and regression applications. In this paper we present a novel sparse
autoencoder for modeling high-dimensional sensory data that allows the user to set the
sparsity level and can be used for both off-line and on-line learning applications. The encoder
starts by generating random basis functions and adjusts the parameters of the basis functions
as data arrives for training. After training, a sensory data can be represented by a linear
combination of a small number of basis functions. Potential applications of the autoencoder
among others include the realization of advanced feature detectors and signal processing
methods. We evaluated the performance of the method on standard image data from the
literature and found that our autoencoder gives results comparable to the results reported in
the literature.
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1. Introduction

Sparse autoencoders can be used to learn important features from data that are useful for classification
or regression tasks [1,4,7]. Most autoencoders optimize the encoder matrix (input weights) and decoder
matrix (output weights) simultaneously. This does not easily allow the use of variety of learning
algorithms developed for either off-line or on-line learning tasks. The dominant method of learning
the parameters of autoencoders is the popular backprobagation algorithm. In this paper we present an
autoencoder that only optimizes the elements of the decoder matrix and then updates the encoder matrix.
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This facilitates the use of many existing algorithms for feature extraction for both off-line and on-line
learning tasks.

A work closely related to ours is the publication by Makhzani and Frey [5]. Their sparse autoencoder
learns to represent an input signal using the k largest hidden units. Our sparse encoder also learns
to represent an input signal using only the s largest hidden units. While the sparse autoencoder by
Makhzani and Frey optimizes the decoder matrix and encoder matrix simultaneously using the concept
of tied weights, our sparse autoencoder optimizes only the decoder matrix and latter updates the encoder
matrix using a weighted sum of the current encoder matrix and the optimized decoder matrix. This
makes the network to learn more quickly and allows for the usage of many algorithms developed for
neural networks such as backpropagation, algorithms for echo state networks (ESNs) [3], and Extreme
Learning Machines (ELMs) [2].

2. Optimizing the Weights of the Sparse Autoencoder

Figure 1 depicts the autoencoder used in this paper. Assume that x1, x2, x3, . . . , xn and xn+1 are inputs
to the autoencoder, where xn+1 = 1. One can form a column vector x = [x1, x2, x3, . . . , xn, xn+1]

T

from the inputs of the autoencoder. In a similar fashion, one can form an output vector y =
[y1, y2, y3, . . . , yn, yn+1]

T from the outputs of the autoencoder y1, y2, y3, . . . , yn and yn+1.

Figure 1. The autoencoder used in this paper.

Let us assume that we have a training dataset T = {x(1), x(2), . . . , x(k), . . . , x(K)}, where K is the
total number of training examples in the training set and x(k) is the kth example. The purpose of the
autoencoder in this paper is to minimize the standard mean square error given by

E =
1

K

K∑
k=1

(
‖x(k) − y(k)‖2

)
, (1)

where y(k) is the output vector of the autoencoder corresponding to the input vector x(k). Let m represent
the number of hidden units of the autoencoder, We the encoder matrix of size (n + 1) ×m and Wd the
decoder matrix of size m× (n+1). During the minimization only the s-largest hidden units are allowed
to be active and the sparsity resulting from this is used automatically as a regularizing factor.
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2.1. Activation Function

The activation function of the hidden units is implemented using a simple rule of preserving the s
largest hidden units and setting the others to zero, which is similar to the activation function of k sparse
autoencoder [5]. After the s largest units are determined, the function computed by the autoencoder is
linear.

2.2. Weight Optimization

The autoencoder in this paper optimizes only the decoder matrix Wd for a given encoder
matrix We, training set T and sparsity level s, where s ∈ [1,m] and m is the number of
hidden units of the autoencoder. The sufficiency of the optimization of the decoder matrix only
is the main contribution of our autoencoder as compared to other autoencoders reported in the
literature. The optimization of the decoder matrix can be done using standard algorithms such as
backpropagation or pseudoinverse procedures developed for other neural networks. Assume that
Th = {h(1),h(2), . . . ,h(k), . . . ,h(K)} is a set of vector of hidden unit activations corresponding to the
training set T = {x(1), x(2), . . . , x(k), . . . , x(K)}. The solution to the decoder matrix can be obtained
using

Wd = (H + βI)−1X, (2)

where β = 1−p
p
, p ∈ (0, 1], H = E[hhT ] and X = E[xxT ].

The optimization of We and Wd starts with a randomly generated initial encoder matrix W(0)
e at batch

number b = 0, b ∈ N. Then the corresponding hidden unit activations are generated and the decoder
matrix W(0)

d is calculated using Equation (2). After this the encoder matrix is updated using

W(1)
e = (1− α)W(0)

e + α
(

W(0)
d

)T
, (3)

where α ∈ [0, 1]. Next W(1)
d is calculated in a similar fashion as above using Equation (2). In general,

W(b)
e is calculated using

W(b)
e = (1− α)W(b−1)

e + α
(

W(b−1)
d

)T
, (4)

where b is the batch number. Equation (4) can also be written as

W(b)
e = (1− α)bW(0)

e + α

b−1∑
i=0

(1− α)b−i−1
(

W(i)
d

)T
. (5)

Clearly, limb→∞(1 − α)bW(0)
e = 0. This shows that the final encoding matrix is independent of the

initial encoding matrix W(0)
e . Therefore,

lim
b→∞

W(b)
e = α lim

b→∞

(
b−1∑
i=0

(1− α)b−i−1
(

W(i)
d

)T)
. (6)
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It can be shown that limb→∞W(b)
e is a fixed matrix W∗ that can be used as an encoding and decoding

matrix for the autoencoder. Hence

W∗ = lim
b→∞

W(b)
e (7)

Algorithm 1 summarizes the learning algorithm of our sparse autoencoder.

Algorithm 1: Learning algorithm for the proposed autoencoder

initialize We randomly and select α, the sparsity level s and a small positive number ε ;
while ‖We − (Wd)

T ‖2 > ε do
solve for Wd corresponding to We using Equation (2) ;
perform the update We ← (1− α)We + α (Wd)

T ;

end

3. Experimental Results

In this section, we present the results obtained on MNIST dataset and on natural images.

3.1. MNIST Dataset

Figure 2 shows the visualization of the first 80 learned features for four sparsity levels when applying
the autoencoder on MNIST dataset. The autoencoder used for the training has 2000 hidden units. From
the figure, it can be seen that as the sparsity level increases, the autoencoder learns global features. It
should be noted that for higher sparsity levels, a large number of hidden units might remain zero all the
time. To circumvent this problem one can use functions that give similar effects as the function given
below

s(b) = sf + b(m− sf ) exp(−γb)c, (8)

where b is the batch number, m is the number of hidden units, s(b) is the current sparsity level, sf is the
final (desired) sparsity level and γ controls rate of increase of the sparsity level during training.

3.2. Natural Images

Following the experiments done by Vincent et al. [7] our autoencoder is trained on 12 × 12 image
patches extracted from whitened natural images, made available by Olshausen [6]. We extracted 150,000
patches of images for training. An autoencoder with 100 hidden units is trained. The sparsity level of
the autoencoder is set to 10. This means for a given input, only 10 hidden units will be active.

Figure 3 shows Gabor-like edge detectors learned by the algorithm for three independent runs. The
result shows that the autoencoder learns interesting structures from the natural image patches. It can be
seen from Figure 3 that the edge detectors learned from independent runs are different. The learned edge
detectors are dependent on the patches sampled from the natural images.
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(a)

(b)

(c)

(d)

Figure 2. Learned features for different levels of sparsities (a) 70 (b) 40 (c) 25 and (d) 10
out of 2000 hidden units. One can see that as the sparsity level increases, the autoencoder
learns global features.

(a) (b) (c) (d)

Figure 3. Examples of extracted image patches used for training (a). Edge detectors learned
by the autoencoder (b, c and d).
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4. Conclusions

We have presented a novel sparse autoencoder that needs to optimize only the decoding matrix (output
weights) for a given encoding matrix (input weights). This allows the autoencoder to learn important
features using a variety of learning methods developed for batch and on-line learning problems. An
interesting future work would be the realization of deep sparse autoencoder using the presented sparse
autoencoder and the analysis of the suitability of the deep autoencoder for on-line learning problems.
Additionally, the impact of realization of robust feature detectors by the presented autoencoder on
improving the classification and regression performance is an interesting topic to address.
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