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Introduction

Random fields are useful mathematical structures in the study and
characterization of non-deterministic complex systems

The mais goal is to understand how relationships between pieces of
information give rise to collective behaviors among different scale levels of
a system

In complex systems, the interaction between the components is highly
non-linear and/or non-deterministic
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Introduction

Random fields are particularly interesting mathematical structures due to
the following assumptions:

it is possible to replace the usual statistical independence assumption
by a more realistic conditional independence hypothesis

we can restrict the size of the maximum clique to be two, that is, we
can assume only binary relationships

considering that the coupling parameter is invariant and isotropic, all
the information regarding the spatial dependence structure of the
random field is conveyed by a single scalar parameter - the inverse
temperature β
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The q-state Potts model

It is a model used to study collective effects based on consequences of
local interactions in the case of a finite set of behaviors (q)

Definition

A pairwise q-state Potts random field regarding a local neighborhood
system ηi defined on a lattice S = {s1, s2, . . . , sn} is completely
characterized by a set of n local conditional density functions p(xi |ηi , β),
given by:

p(xi = m|ηi , β) =
exp{βUi (m)}
q∑

l=1

exp{βUi (l)}
(1)

where Ui (m) denotes the number of times the behavior m is found in the
neighborhood of an element and β is the inverse temperature, a global
parameter that controls the spatial dependence structure of the system.
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Isotropic pairwise Gaussian random fields
The main advantage of this model is the mathematical tractability. It is a
model suitable for modelling complex systems in which each cell may
assume an infinite number of states at a given time

Definition

An isotropic pairwise Gaussian Markov random field regarding a local
neighborhood system ηi defined on a lattice S = {s1, s2, . . . , sn} is
completely characterized by a set of n local conditional density functions
p(xi |ηi , ~θ), given by:

p
(

xi |ηi , ~θ
)

=
1√

2πσ2
exp

− 1

2σ2

xi − µ− β
∑
j∈ηi

(xj − µ)

2 (2)

with ~θ = (µ, σ2, β) the parameters vector, where µ and σ2 are respectively
the expected value (mean) and the variance of the random variables in the
field, and β is the inverse temperature
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Parameter Estimation in Random Fields

In order to compute statistical measures from a random field (entropy,
Fisher information) it is necessary to estimate the model parameters.

However, maximum likelihood estimation can be intractable for the inverse
temperature parameter estimation, due to the existence of the partition
function in the joint Gibbs distribution.

An alternative, is to perform maximum pseudo-likelihood estimation,
which is based on the conditional independence principle.
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Maximum Pseudo-Likelihood Estimation

Definition

Let an isotropic pairwise Markov random field model be defined on a
rectangular lattice S = {s1, s2, . . . , sn} with a neighborhood system ηi .

Assuming that X(t) = {x (t)
1 , x

(t)
2 , . . . , x

(t)
n } denotes the set corresponding

to the observations at a time t (a snapshot of the random field), the
pseudo-likelihood function of the model is defined by:

L
(
β; X(t)

)
=

n∏
i=1

p(xi |ηi , β) (3)

The pseudo-likelihood function is the product of the local conditional
density functions throughout the field. Note that the pseudo-likelihood
function is a function of the model parameters.
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Estimating the Inverse Temperature in the GMRF Model
The maximum pseudo-likelihood function is given by:

log L
(
~θ; X(t)

)
= −n

2
log
(
2πσ2

)
− 1

2σ2

n∑
i=1

xi − µ− β
∑
j∈ηi

(xj − µ)

2

(4)
Maximizing it in β and after some algebra we have:

β̂MPL =

∑
j∈ηi

σ̂ij∑
j∈ηi

∑
k∈ηi

σ̂jk
(5)

where σ̂ij denotes the sample covariance between the central variable xi
and xj ∈ ηi . Similarly, σ̂jk denotes the sample covariance between two
variables belonging to the neighborhood system ηi (the definition of ηi
does not include the the location si ).
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Estimating the Inverse Temperature in the Potts Model

The pseudo-likelihood equation for the Potts model is given by:

L(β) =
∏
i∈S

p(xi = mi | ηi ) =
∏
i∈S

exp {βUi (mi )}∑q
`=1 exp {βUi (`)}

(6)

Taking the logarithms, differentiating on the parameter and setting the
result to zero, leads to the following expression, which is the basis for the
derivation of the proposed pseudo-likelihood equation:

∂

∂β
logL(β) =

∑
i∈S

Ui (mi )−
∑
i∈S

[∑q
`=1 Ui (`) exp {βUi (`)}∑q

`=1 exp {βUi (`)}

]
= 0 (7)
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Estimating the Inverse Temperature in the Potts Model
The derivation of the q-state Potts model pseudo-likelihood equation
consists in expanding the second term of previous equation in all possible
spatial configuration patterns that provide different contributions

Figure : Contextual configuration patterns for Potts MRF model in first order
neighborhood systems

In the Potts model location information is irrelevant since it is an isotropic
model:

~v0 = [1, 1, 1, 1] ~v1 = [2, 1, 1, 0] ~v2 = [2, 2, 0, 0] (8)

~v3 = [3, 1, 0, 0] ~v4 = [4, 0, 0, 0] (9)
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Estimating the Inverse Temperature in the Potts Model
Note that the set of all possible configuration patterns given a
neighborhood system of size K is composed by the set of vectors that
define all the partitions of the integer K . It is known that this structure
defines a poset, represented by the following Hasse diagram (for K = 8):

Figure : Note the highly non-linear topology, with several irregularities and
asymmetries.
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Maximum Pseudo-Likelihood Equation (Potts model)

∑
s∈§

Us (ms ) −
8e8β̂

e8β̂ + q − 1
K1 −

7e7β̂ + eβ̂

e7β̂ + eβ̂ + q − 2
K2 −

6e6β̂ + 2e 2̂β

e6β̂ + e2β̂ + q − 2
K3

−
6e6β̂ + 2eβ̂

e6β̂ + 2eβ̂ + q − 3
K4 −

5e5β̂ + 3e3β̂

e5β̂ + e3β̂ + q − 2
K5 −

5e5β̂ + 2e2β̂ + eβ̂

e5β̂ + e2β̂ + eβ̂ + q − 3
K6

−
5e5β̂ + 3eβ̂

e5β̂ + 3eβ̂ + q − 4
K7 −

8e4β̂

2e4β̂ + q − 2
K8 −

4e4β̂ + 3e3β̂ + eβ̂

e4β̂ + e3β̂ + eβ̂ + q − 3
K9

−
4e4β̂ + 4e2β̂

e4β̂ + 2e2β̂ + q − 3
K10 −

4e4β̂ + 2e2β̂ + 2eβ̂

e4β̂ + e2β̂ + 2eβ̂ + q − 4
K11

−
4e4β̂ + 4eβ̂

e4β̂ + 4eβ̂ + q − 5
K12 −

6e3β̂ + 2e2β̂

2e3β̂ + e2β̂ + q − 3
K13 −

6e3β̂ + 2eβ̂

2e3β̂ + 2eβ̂ + q − 4
K14

−
3e3β̂ + 4e2β̂ + eβ̂

e3β̂ + 2e2β̂ + eβ̂ + q − 4
K15 −

3e3β̂ + 2e2β̂ + 3eβ̂

e3β̂ + e2β̂ + 3eβ̂ + q − 5
K16

−
3e3β̂ + 5eβ̂

e3β̂ + 5eβ̂ + q − 6
K17 −

8e2β̂

4e2β̂ + q − 4
K18 −

6e2β̂ + 2eβ̂

3e2β̂ + 2eβ̂ + q − 5
K19

−
4e2β̂ + 4eβ̂

2e2β̂ + 4eβ̂ + q − 6
K20 −

2e2β̂ + 6eβ̂

e2β̂ + 6eβ̂ + q − 7
K21 −

8eβ̂

8eβ̂ + q − 8
K22 = 0 (10)
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MPL equation for q-state Potts model
The maximum pseudo-likelihood equation is numerically solved by using
the Brent’s method, a root-finding algorithm that does not require the
computation (not even the existence) of derivatives or analytical gradients.

Figure : Comparison between the distribution of contextual configuration patterns
for both smooth and noisy images ( k0 stands for total agreement and k22 for
zero agreement).
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Markov Chain Monte Carlo Algorithms
Algorithm 1: Metropolis-Hastings

Input : An initial Sx × Sy random field configuration; The maximum
number of iterations Niter .

Output: An output of the desired random field model.

Define a random field model and its parameters.
Initialize a random field configuration by randomly choosing each element
of the system. Name this configuration x.
while n ≤ Niter do

for i ← 1 to Sx do
for j ← 1 to Sy do

Choose a new random value g and set yij = g.

Let p = min
{

1, P(X=y)
P(X=x)

}
.

Replace x by y with probability p.
end

end

end
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Markov Chain Monte Carlo Algorithms
Algorithm 2: Gibbs Sampler

Input : An initial Sx × Sy random field configuration; The maximum
number of iterations Niter .

Output: An output of the desired random field model.

Define a random field model and its parameters.
Initialize a random field configuration by randomly choosing each element
of the system. Name this configuration x.
while n ≤ Niter do

for i ← 1 to Sx do
for j ← 1 to Sy do

Compute the set of probabilities {pg}, ∀g ∈ G , where
pg = p (xij = g |ηij) with ηij denoting the neighborhood of xij .
Assign the label g to xij with probability pg .

end

end

end

Alexandre L M Levada (UFSCar) Random Fields in Complex Systems September 24, 2015 16 / 41



Information Geometry

Information geometry is a branch of mathematics that provides a robust
and geometrical treatment to most parametric statistical models

When we analyse isolated random variables (independent), the scenario is
extensively known, with the underlying statistical manifolds being
completely characterized

However, little is known about the scenario in which we have several
variables interacting with each other (random fields)
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Fisher information and Information Geometry

The concept of Fisher information has been present in an ubiquitous
manner throughout mathematical statistics, playing an important role in
several applications, from numerical estimation methods based on the
Newton-Raphson iteration to the definition of lower bounds in unbiased
estimation (Cramer-Rao lower bound).

With the development of information geometry, another fundamental role
of Fisher information in statistical models has been discovered: it defines
intrinsic geometric properties of the parametric space of a model, by
characterizing the metric tensor of the respective manifold.
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Fisher information and Information Geometry

Fisher information matrix is the metric tensor of the Riemannian manifold
that defines the underlying parametric space of a random field

The metric tensor makes it possible to express the square of an
infinitesimal displacement in the manifold, ds2, as a function of an
infinitesimal displacement of the parameters

ds2 =
[
dθ dβ

] [A B
B C

] [
dθ
dβ

]
= Adθ2 + 2Bdθdβ + Cdβ2 (11)

where the matrix of coefficients A, B, e C is the metric tensor.
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Fisher information

In the context of information theory, Fisher information measures the
amount of information a random sample conveys about an unknown
parameter

Definition

Let p(X ; ~θ) be a probability density function where ~θ = (θ1, . . . , θn) ∈ Θ is
the parametric vector. The Fisher information matrix, which is the natural
Riemannian metric of the parametric space, is defined as:

{
I (~θ)

}
ij

= E

[(
∂

∂θi
log p(X ; ~θ)

)(
∂

∂θj
log p(X ; ~θ)

)]
, i , j = 1, . . . , n

(12)
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Information Equality

In some cases, it is possible to compute the expected Fisher information
matrix of a model by two different but equivalent ways (since the
integration and differentiation operators can be interchangeable), defining
the condition known as the information equality:

E

[(
∂

∂θi
log p(X ; ~θ)

)(
∂

∂θj
log p(X ; ~θ)

)]
= −E

[
∂2

∂θi∂θj
log p(X ; ~θ)

]
(13)

However, in random field models information equality is not a natural
condition due to the inverse temperature parameter. As β drifts apart
from zero, we need to consider 2 types of Fisher information. In this
investigation we are concerned only with the Fisher information regarding
the inverse temperature parameter.
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Fisher information in Gaussian random fields

Let Σp be the covariance matrix of the random vectors ~pi , i = 1, 2, . . . , n,
obtained by lexicographic ordering the local configuration patterns xi ∪ ηi .

In this work, we choose a second-order neighborhood system, making each
local configuration pattern a 3× 3 patch. Thus, since each vector ~pi has 9
dimensions, the resulting covariance matrix Σp is 9× 9.

Let Σ−p be the sub-matrix of dimensions 8× 8 obtained by removing the
central row and central column of Σp (these elements are the covariances
between xi and each one of its neighbors xj ∈ ηi ).

Also, let ~ρ be the vector of dimensions 8× 1 formed by all the elements of
the central row of Σp, excluding the middle one (which is the variance of
xi actually).

Alexandre L M Levada (UFSCar) Random Fields in Complex Systems September 24, 2015 22 / 41



Decomposing the covariance matrix
1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

=

1 2 3 4 6 7 8 9

=

=

1 2 3 4 6 7 8 9

1

2

3

4

6

7

8

9

Figure : Decomposing the covariance matrix Σp into Σ−
p and ~ρ on a second-order

neighborhood system (K = 8). By expressing both Φβ and Ψβ in terms of
Kronocker products, it is possible to compute Fisher information in a efficient way
during computational simulations.
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Fisher information in Gaussian random fields

Definition

Let an isotropic pairwise GMRF be defined on a lattice S = {s1, s2, . . . , sn}
with a neighborhood system ηi of size K (usual choices for K are even

values: 4, 8, 12, 20 or 24). Assuming that X(t) = {x (t)
1 , x

(t)
2 , . . . , x

(t)
n }

denotes the global configuration of the system at time t, the type-I
expected Fisher information Φβ for X(t) is:

Φβ =
1

σ2
∥∥Σ−p

∥∥
+

+
1

σ4

[
2
∥∥∥~ρ⊗ ~ρT∥∥∥

+
− 6β

∥∥∥~ρT ⊗ Σ−p

∥∥∥
+

+ 3β2
∥∥Σ−p ⊗ Σ−p

∥∥
+

]
(14)

where ‖A‖+ denotes the summation of all the entries of the matrix A (not
to be confused with a matrix norm) and ⊗ denotes the Kronecker (tensor)
product. Similarly, it is possible to define Ψβ using a matrix-vector
notation and tensor products.
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Fisher information in Gaussian random fields

Definition

Let an isotropic pairwise GMRF be defined on a lattice S = {s1, s2, . . . , sn}
with a neighborhood system ηi of size K (usual choices for K are 4, 8, 12,

20 or 24). Assuming that X(t) = {x (t)
1 , x

(t)
2 , . . . , x

(t)
n } denotes the global

configuration of the system at time t, the type-II expected Fisher
information Ψβ for X(t) is:

Ψβ =
1

σ2
∥∥Σ−p

∥∥
+

(15)
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Entropy in Gaussian random fields

Definition

Let an isotropic pairwise GMRF be defined on a lattice S = {s1, s2, . . . , sn}
with a neighborhood system ηi . Assuming that X(t) = {x (t)

1 , x
(t)
2 , . . . , x

(t)
n }

denotes the global configuration of the system at time t, then the entropy
Hβ for this state X(t) is given by:

Hβ = −E
[
log p

(
xi |ηi , ~θ

)]
=

1

2

[
log
(
2πσ2

)
+ 1
]

(16)

− 1

σ2

β∑
j∈ηi

σij −
β2

2

∑
j∈ηi

∑
k∈ηi

σjk
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Fisher information in q-state Potts model

Definition

Let an isotropic pairwise q-state Potts model be defined on a lattice
S = {s1, s2, . . . , sn} with a neighborhood system ηi of size K . Assuming

that X(t) = {x (t)
1 , x

(t)
2 , . . . , x

(t)
n } denotes the global configuration of the

system at time t, the type-I and type-II observed Fisher information φβ
and ψβ for X(t) is:

φβ =
1

n

n∑
i=1


∥∥∥(~vi � ~wi )⊗ (~vi � ~wi )

T
∥∥∥
+∥∥~wi ⊗ ~wT

i

∥∥
+

 (17)

ψβ =
1

n

n∑
i=1

[∥∥Λi �
(
~wi ⊗ ~wT

i

)∥∥
+∥∥~wi ⊗ ~wT

i

∥∥
+

]
(18)

where ~vi , ~wi and Λi = Ai � Bi are defined according to the next equations.
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Fisher information in q-state Potts model

~vi =


Ui (xi )− Ui (1)
Ui (xi )− Ui (2)

...
Ui (xi )− Ui (q)

 (19)

~wi =


eβUi (1)

eβUi (2)

...

eβUi (q)

 (20)
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Fisher information in q-state Potts model

Ai =


Ui (1) Ui (1) Ui (1) · · · Ui (1)
Ui (2) Ui (2) Ui (2) · · · Ui (2)

...
Ui (q) Ui (q) Ui (q) · · · Ui (q)

 (21)

Bi =


0 Ui (1)− Ui (2) Ui (1)− Ui (3) · · · Ui (1)− Ui (q)

Ui (2)− Ui (1) 0 Ui (2)− Ui (3) · · · Ui (2)− Ui (q)
...

Ui (q)− Ui (1) 0 Uq(2)− Ui (3) · · · 0


(22)

with Λi = Ai � Bi , where � denotes the Hadamard product (point-wise) between
two matrices
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Entropy in q-state Potts model

Definition

Let an isotropic pairwise q-state Potts model be defined on a lattice
S = {s1, s2, . . . , sn} with a neighborhood system ηi . Assuming that

X(t) = {x (t)
1 , x

(t)
2 , . . . , x

(t)
n } denotes the global configuration of the system

at time t, then the entropy Hβ for this state X(t) is given by:

Hβ = −E
[
log p

(
xi |ηi , ~θ

)]
≈ 1

n

n∑
i=1

[
log ‖~wi‖+ − βUi (xi )

]
(23)
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Fisher curves

Definition

Let an isotropic pairwise GMRF model be defined on a lattice
S = {s1, s2, . . . , sn} with a neighborhood system ηi and
X(β1),X(β2), . . . ,X(βn) be a sequence of outcomes (global configurations)
produced by different values of βi (inverse temperature parameters) for
which A = βMIN = β1 < β2 < · · · < βn = βMAX = B. The Fisher curve
from A to B is defined as the parametric curve ~F : < → <3 that maps
each configuration X(βi ) to a point (Φβ,Ψβ,Hβ) in the information space:

~FB
A (β) = (Φβ,Ψβ,Hβ) β = A, . . . ,B (24)

where Φβ, Ψβ and Hβ denote the type-I Fisher information, type-II Fisher
information and entropy, respectively.
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Fisher curves

The motivation behind the Fisher curve is the development of a
computational tool for the study and characterization of random fields.

The Fisher curve of a system is the parametric curve embedded in this
information-theoretic space obtained by varying the inverse temperature
parameter β from an initial value βI to a final value βF .

The resulting curve provides a geometrical interpretation about how the
random field evolves from a lower entropy configuration A to a higher
entropy configuration B (or vice-versa), since the Fisher information plays
an important role in providing a natural metric to the Riemannian
manifold of a statistical model.

We will call the path from a global system configuration A to a global
system configuration B as the Fisher curve (from A to B) of the system,
denoted by ~FB

A (β).
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Computational Simulations

Our main objective is to measure Φβ,Ψβ and Hβ along a MCMC
simulation in which the inverse temperature parameter β is controlled to
guide the global system behavior.

By sensing a component of the metric tensor (Fisher information) at each
point, we are trying to capture part of the deformation in the geometric
structure of the manifold defined by the random field’s parametric space
throughout the process.
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Fisher curves in Gaussian random fields

Figure : Gaussian random field dynamics along a Markov Chain Monte
Carlo (MCMC) simulation. Evolution of the random field as the inverse
temperature parameter β is first increased from zero to 0.5 and then decreased
from 0.5 to zero.
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Fisher curves in Gaussian random fields
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Figure : Fisher information in the isotropic pairwise GMRF model along the
MCMC simulation. When the temperature is infinity (β = 0), the information
equality prevails, however, for larger values of β, Φβ and Ψβ diverge.
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Fisher curves in Gaussian random fields

Figure : Fisher curve of the random field. The results show that moving along
different entropic states causes the emergence of a natural orientation in terms of
information (an arrow of time). This behavior resembles the conceptual idea of
the phenomenon known as hysteresis.
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Fisher curves in q-state Potts model

Figure : 8-state Potts random field dynamics along a Markov Chain Monte
Carlo (MCMC) simulation. Evolution of the random field as the inverse
temperature parameter β is first increased then decreased back to zero.
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Fisher curves in q-state Potts model

Figure : Fisher information in a 8-state Potts random field. Evolution of Φβ

and Ψβ as the inverse temperature parameter β is first increased then decreased
back to zero. Note that there is an inversion in the dominance between Φβ and
Ψβ .
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Fisher curves in q-state Potts model

Figure : 3-D Fisher curve in a 8-state Potts random field. The trajectory in
the information space from a higher entropy state to lower entropy state and back
indicates a unique orientation in the evolution of random field dynamics. This
natural orientation emerges when the inverse temperature parameter significantly
deviates from zero, suggesting the emergence of an arrow of time in such complex
systems. Once again, note that the Fisher curve resembles a mathematical model
of hysteresis.
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Conclusions and Final Remarks

In this overview, we addressed the problem of characterizing the Fisher
curves of random field models as mathematical tools for the study of the
evolution of complex systems.

To investigate the dynamics of such systems, we performed computational
simulations in which the inverse temperature parameter is controlled to
guide the system behavior throughout different entropic states.

Basically, the Fisher curve of the system provides a geometrical tool for
the analysis of random fields by showing how different entropic states are
”linked” in terms of Fisher information, which is, by definition, the metric
tensor of the underlying random field model parametric space. In other
words, when the random field moves along different entropic states, its
parametric space is actually being deformed by changes that happen in
Fisher information matrix (the metric tensor).
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Conclusions and Final Remarks

The main conclusion of this investigation can be summarized as: in
random fields, moving towards lower entropy states is different form
moving towards higher entropy states, since the Fisher curves are not the
same. This asymmetry induces a natural orientation to the process of
taking the random field from an initial state A to a final state B and back,
which is basically the direction pointed by an arrow of time, since the only
way to move in the opposite direction is by running the simulations
backwards. In this context, the Fisher curve resembles a mathematical
model of hysteresis.
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