

In Silico Design of New Drugs for Myeloid Leukemia Treatment

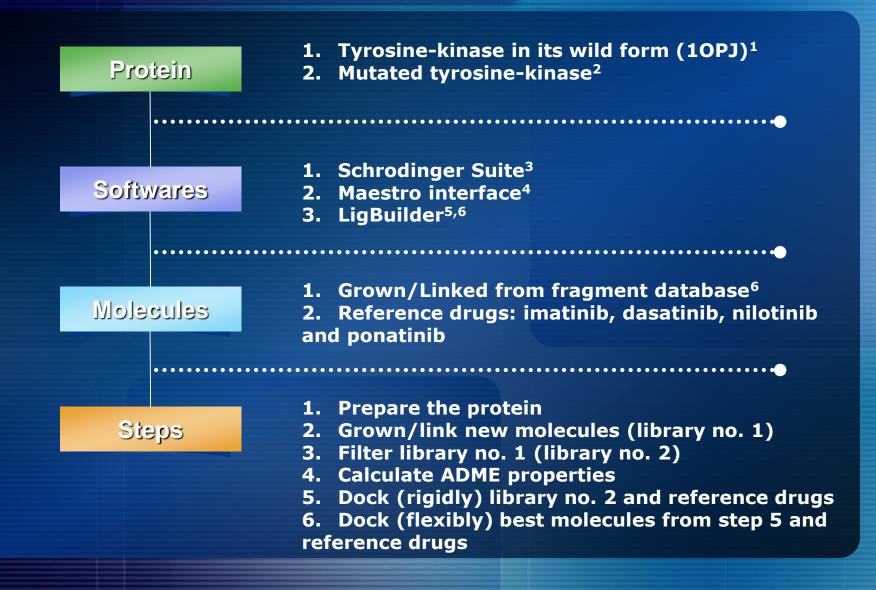
Washington Pereira and Ihosvany Camps Computational Modeling Laboratory – LaModel Exact Science Institute – ICEx Federal University of Alfenas - UNIFAL-MG Alfenas. Minas Gerais. Brazil

Contents

1. Introduction

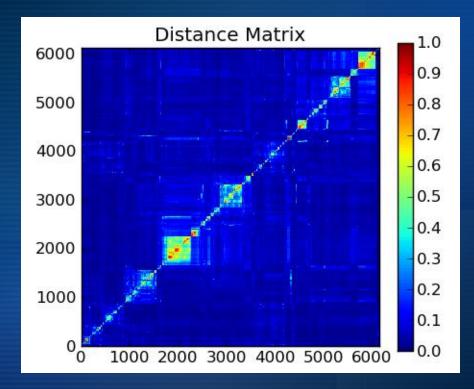
2. Materials and Methods

3. Results and Discussion


4. Conclusions

5. Acknowledgments

Introduction


In this work we use *in silico* tools like *de novo* drug design, molecular docking and absorption, distribution, metabolism and excretion (ADME) studies in order to develop new inhibitors for tyrosine-kinase protein (including its mutate forms) involved in myeloid leukemia disease. This disease is the first cancer directly associated with a genetic abnormality and is associated with hematopoietic stem cells that are manifested primarily with expansion myelopoiesis. Starting from a family of fragment and seeds from known reference drugs, a set of more than 6k molecules were generated. This first set was filtered using the Tanimoto similarity coefficient as criterion. The second set of more dissimilar molecules were then used in the docking and ADME studies. As a result, we obtain a group of molecule that inhibit the tyrosine-kinase family and have ADME properties better than the reference drugs used in the treatment of myeloid leukemia.

Materials and Methods

To validate the structural diversity of the generated library we calculated a 2D linear hashed fingerprint with a 64-bit address space. Then, we used the Tanimoto metric to compute the similarity among all the molecules (if the Tanimoto coefficient of two structures is greater than 0.85, the structures are considered similar, and descarted)

Filtering

Absorption, Distribution, Metabolism and Excretion

Use of Lipinski's rule of five⁷: widely used descriptor to study the drugability of molecules. It predicts that a molecule will have poor absorption when: MW > 500Da

NIVV > 500Da

QPlogPo/w > 5

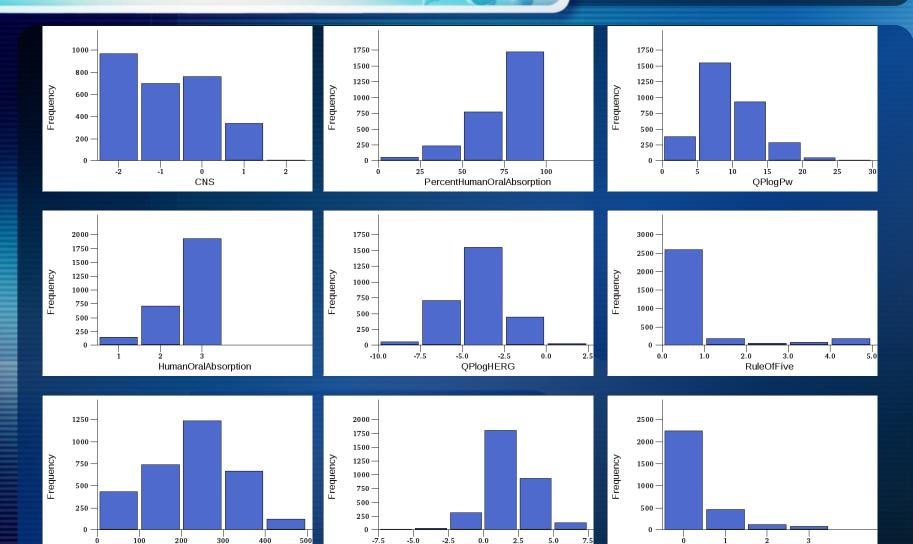
HBDonor > 5

HBAcceptor > 10

Compound	MW	QPlogPo/w	HBDonor*	HBAcceptor*	QPlogHERG
Imatinib	493.610	3.476	2	10.00	<u>-9.280</u>
Dasatinib	488.006	2.509	3	10.00	<u>-6.672</u>
Nilotinib	<u>529.523</u>	<u>5.870</u>	2	8.00	<u>-8.246</u>
Ponatinib	<u>532.567</u>	4.602	1	9.50	<u>-9.243</u>
680	487.511	1.856	5	10.00	<u>-6.307</u>
723	430.502	4.471	3	6.25	<u>-8.392</u>
781	459.498	4.960	3	6.75	<u>-5.837</u>

• As they are average values, they can be non-integers. Red values = bad values!

MW: molecular weight


QPlogPo/w: octanol/water partition coefficient

HBDonor: number of hydrogen bonds that would be donated by the solute to water molecules HBAcceptor: estimated number of hydrogen bonds that would be accepted by the solute from water molecules

QPlogHERG: simulate the blockage of human ether-a-go-go hERG K+ channels (cardiac side effects).

MW

Absorption, Distribution, Metabolism and Excretion

QPlogPo/w

RuleOfThree

Docking results: scores

Table 1.1 Docking score (Gscore*) for the best molecules and for the references drugs (the lower the better).									
10PJ	Molecule	680	632	681	781	723	721	670	700
	GScore	-15.34	-15.332	-15.148	-15.132	-14.601	-14.445	-14.394	-14.369
	Reference	Imatinib	Dasatinib	Nilotinib	Ponatinib				
	GScore	-13.955	-9.079	-13.631	-12.961				
T315I	Molecule	781	687	715	688	711	703	674	701
	GScore	-13.571	-13.419	-13.419	-13.402	-13.402	-12.96	-12.943	-12.916
	Reference	Imatinib	Dasatinib	Nilotinib	Ponatinib				
	GScore	-13.313	-7.223	-4.892	-11.922				
T315A	Molecule	781	688	711	721	687	715	751	559
	GScore	-14.16	-14.093	-14.093	-14.038	-13.92	-13.92	-13.884	-13.764
	Reference	Imatinib	Dasatinib	Nilotinib	Ponatinib				
	GScore	-13.054	-9.901	-13.487	-13.086				

* In kcal/mol

Docking results: scores

Table 1.2 Docking score (Gscore*) for the best molecules and for the references drugs.									
M244V	Molecule	723	681	559	558	781	700	646	647
	GScore	-14.954	-14.804	-14.47	-14.442	-14.355	-14.196	-14.108	-14.097
	Reference	Imatinib	Dasatinib	Nilotinib	Ponatinib				
	GScore	-13.156	-10.397	-13.511	-13.187				
E355G	Molecule	781	559	558	700	680	646	681	773
	GScore	-16.127	-14.737	-14.469	-14.13	-14.059	-13.993	-13.991	-13.956
	Reference	Imatinib	Dasatinib	Nilotinib	Ponatinib				
	GScore	-10.223	-11.005	-13.582	-12.982				
H396A	Molecule	781	751	681	558	559	702	734	766
	GScore	-15.823	-14.924	-14.874	-14.433	-14.398	-14.225	-14.013	-13.982
	Reference	Imatinib	Dasatinib	Nilotinib	Ponatinib				
	GScore	-13.016	-9.689	-14.12	-13.681				

* In kcal/mol

Docking results: interaction energies

Docking results: interaction energies										
Complex	HBondE ^a	LipoE ^a	ElectE ^a	HBond ^b	Good ^b	Bad ^b	Ugly ^b	π - π^{b}	π -cation	HBondD ^c
10PJ+ 680	-3.226	-7.705	-1.061	6	486	9	0	1	1	1.796, 1.890, 1.975, 2.131, 2.167, 2.168
10PJ+Imatinib	-2.499	-7.270	-1.550	4	516	12	0	1	1	1.711, 1.895, 1.934, 2.005
T315I+ 781	-3.407	-7.540	-0.470	3	482	15	0	1	0	1.900, 2.097, 2.135
T315I+Imatinib	-1.545	-6.835	-1.651	4	563	20	1	1	1	1.548, 1.832, 2.029, 2.099
T315A+ 781	-3.447	-7.759	-0.790	3	447	11	0	1	1	1.754, 2.005, 2.129
T315A+Nilotinib	-1.455	-7.175	-0.829	3	455	7	0	1	0	2.020, 2.031, 2.071
M244V+ 723	-1.988	-7.737	-2.312	4	448	13	0	1	1	1.793, 2.029, 2.096, 2.340
M244V+Nilotinib	-1.610	-7.561	-0.831	3	529	8	0	1	0	1.781, 1.911, 2.225
E355G+ 781	-4.282	-7.545	-1.151	5	462	14	1	1	1	1.662, 1.756, 2.005, 2.058, 2.132
E355G+Nilotinib	-1.653	-7.703	-0.789	3	531	10	0	1	0	1.872, 2.018, 2.108
H396A+ 781	-3.957	-7.593	-1.145	5	457	9	0	1	1	1.675, 1.813, 1.983, 1.986, 2.159
H396A+Nilotinib	-1.795	-7.516	-1.003	3	521	11	0	1	0	1.648, 1.948, 1.970

^a In kcal/mol.

^b Number of contacts.

^c H-Bond distances, in Å.

Docking: 2D interactions 10PJ

GLY 340

PHE 336

MET 337

LEU 389

GLU 335

TYR 272

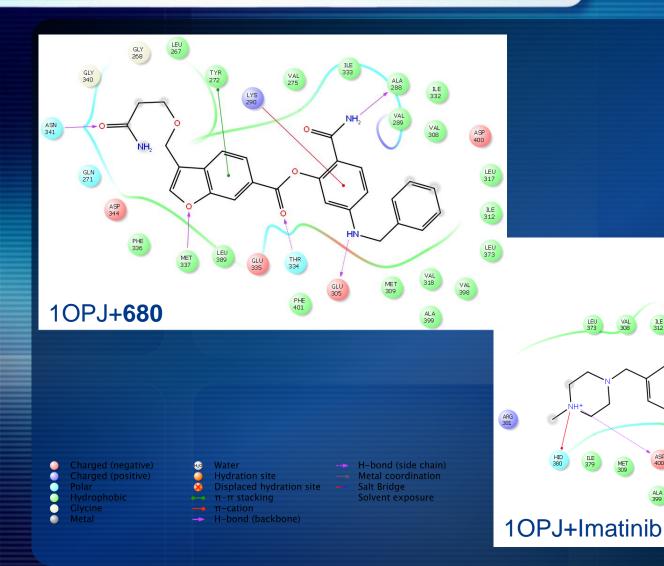
ALA 288

ILE 333

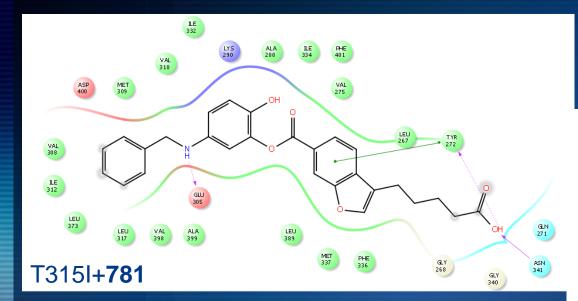
THR 334

PHE 401

VAL 275

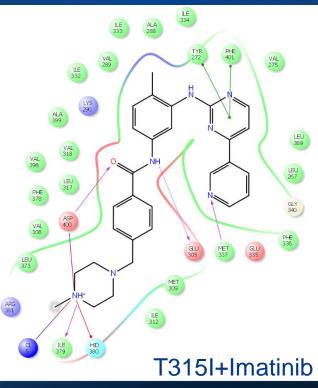

LEU 317

ILE 312


ASP 400

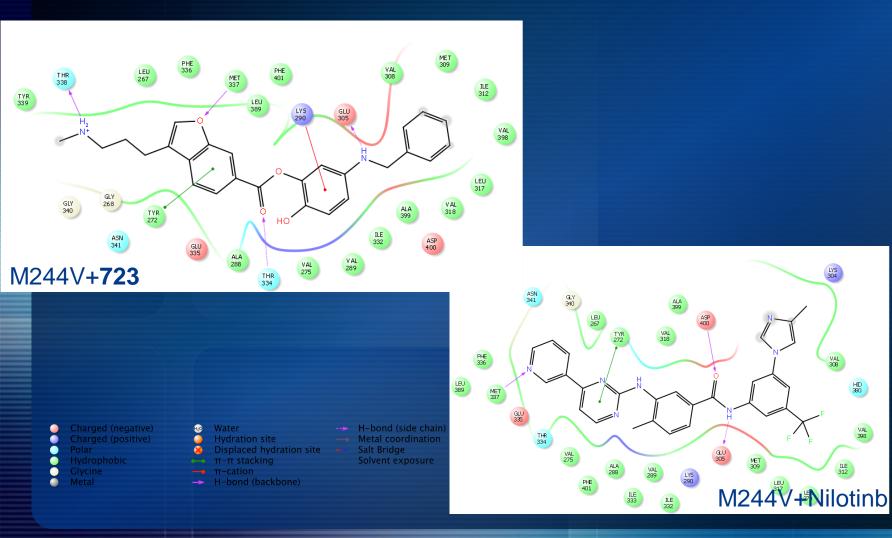
VAL 308

LEU 267


Docking: 2D interactions T315I

Charged (negativ
Charged (positive
Polar
Hydrophobic
Glycine
Metal

Water
Hydration site
Displaced hydration site
π-π stacking
π-cation
H-bond (backbone)


H-bond (side chain)
Metal coordination
Salt Bridge
Solvent exposure

Docking: 2D interactions M244V

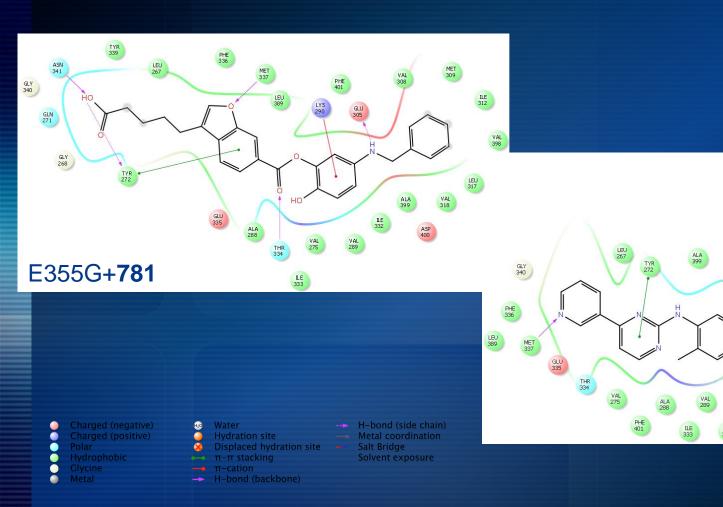
LYS 304

HD

Docking: 2D interactions E355G

> LYS 290

LYS 304


> VAL 308

E355G[#]+Nilotinb

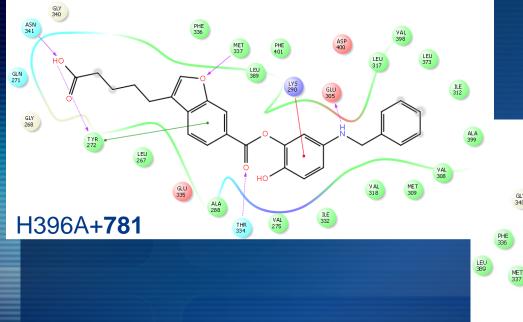
ILE 312

LEU 317

LEU 373

Docking: 2D interactions H396A

> LYS 304


> > LEU 317

> > > VAL 398

HID 380

ILE 312

LEU 373

> 1LE 332

H396A+Nilotinb 🖷

Charged (negative
Charged (positive
Polar
Hydrophobic
Glycine
Metal

Water -- Hydration site Displaced hydration site π-π stacking π-cation
Hydration -

H-bond (side chain)
Metal coordination
Salt Bridge
Solvent exposure

Conclussion

The myeloid leukemia is a fatal disease, so it is of great importance to keep the patients in chronic phase where they stay asymptomatic. The fragment based drug design method used in this work turns to be a good alternative to create drugs that can control this neoplasm. Based on the calculated GScore, the *de novo* designed molecules have better inhibitor capacity than the tyrosine-kinase inhibitors most used in the market. These molecules shown strong potential to become drugs capable to inhibit all mutations, mainly the T315I mutation, now the leading cause of deaths due to the difficulty of inhibitors to control it.

Acknowledgments

http://www.unifal-mg.edu.br

http://www.capes.gov.br/

[1] PDB ID: 10PJ. B. Nagar, O. Hantschel, M. A. Young, K. Scheffzek, D. Veach, W. Bornmann, B. Clarkson, G. Superti-Furga, and J. Kuriyan, Cell 112, 859 (2003).

[2] PDB ID: 3QRI. Wayne W. Chan, S. C. Wise, M. D. Kaufman, Y. M. Ahn, C. L. Ensinger, T. Haack, M. M. Hood, J. Jones, J. W. Lord, W. P. Lu, D. Miller, W. C. Patt, B. D. Smith, P. A. Petillo, T. J. Rutkoski, H. Telikepalli, L. Vogeti, T. Yao, L. Chun, R. Clark, P. Evangelista, L. C. Gavrilescu, K. Lazarides, V. M. Zaleskas, L. J. Stewart, R. A. V. Etten, and D. L. Flynn, Cancer Cell 19, 556 (2011).

[3] Schrödinger suite: <u>http://www.schrodinger.com/</u>

[4] Maestro, version 10.1, Schrödinger, LLC, New York, NY, 2015.

[5] Ligbuilder site: <u>http://ligbuilder.org/</u>

[6] Y. Yuan, J. Pei, and L. Lai, J. Chem. Inf. Model. 51, 1083 (2011).

[7] C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, Adv. Drug Delivery Rev. 46, 3 (2001).