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Abstract: Today classification of drug candidates on the Biopharmaceutics Classification 

System (BCS) has become an important issue in pharmaceutical researches. In this work, we 

provide a potential in silico approach to predict this system using two separately classification 

models of Dose number and Caco-2 cell permeability. 18 statistical linear and nonlinear models 

have been constructed based on 803 0-2D Dragon and 126 Volsurf+ molecular descriptors to 

classify the solubility and permeability properties. The voting consensus model of solubility 

(VoteS) showed a high accuracy of 88.7% in training and 92.3% in test set. Likewise, for the 

permeability model (VoteP), accuracy was 85.3% in training and 96.9% in test set. A 

combination of VoteS and VoteP appropriately predicts the BCS class of drugs (overall 73% 

with class I precision of 77.2%). This consensus system predicts the BCS allocations of 57 drugs 

appeared in the WHO Model List of Essential Medicines with 87.5% of accuracy. A simulation 

of a biopharmaceutical screening assay has been proved in a large data set of 37,377 compounds 

in different drug development phases (1, 2, 3 and launched), and NMEs. Distributions of BCS 

forecasts illustrate the current status in drug discovery and development. It is anticipated that 

developed QSPR models could offer the best estimation of BCS for NMEs in early stages of 

drug discovery. 
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1. Introduction 

After almost 20 years of the introduction and 

exploration of the Biopharmaceutics 

Classification System (BCS), it has gained a 

major impact on the regulation and development 

of immediate release (IR) solid oral drug 

products [1,2]. Based on the principal factors that 

determine the rate and extent of drug absorption, 

the BCS provides a scientific framework for 

classifying drug substances into one of four 

categories. According to BCS, IR solid oral 

dosage forms are categorized as having either 

rapid or slow in vitro dissolution, and then 

classified based on aqueous solubility and 

intestinal permeability of the active 

pharmaceutical ingredient (API) [1]. This system 

has been formally adopted by the US FDA [3], 

the European agency EMEA [4] and the World 

Health Organization (WHO) [5] as a technical 

standard for waiving BE test requirements for 

oral drugs. A recent study of the economic 

impact of granting biowaivers for class I and III 

BCS demonstrated an impressive saving annual 

expenditure on running BE studies, being more 

than 120 million dollars between the two classes 

[6]. Because it avoids unnecessary drug 

exposures to healthy subjects, while maintaining 

the high public health standard for therapeutic 

equivalence, the BCS is, without doubt, a 

potential tool for speeding up and reducing the 

cost of drug development. 

There is a continuing effort worldwide to 

detect, in the early discovery, the possible BCS-

based biowaiver candidates, e.g. BCS class I 

drugs [7]. One of the common strategies is based 

on BCS provisional classification in which the 

drugs are classified by two sources: dose related 

solubility data (Dose number, Do) and estimated 

human absorption data, i.e. in vitro permeability 

(usually determined by the Caco-2 cell cultured 

method) [3,8], or simple in silico partition 

coefficient calculation [9]. In this regard, in silico 

approach presents the two most important 

advantages: (i) provides a flexible approach that 

can be applied in different stages of drug 

development with different purposes, and (ii) 

allows estimating the BCS classes of new 

molecular entities (NMEs) without knowledge of 

therapeutic dosage. Definitely, with respect to 

experimental methods, computational approaches 

are cost-saving and no sample requirement 

methods. 

However, up to now, robust in silico 

approach, i.e. Quantitative Structure-

Activity/Property Relationships (QSAR/QSPR) 

modeling, has not been explored sufficiently in 

the BCS studies. Based on published findings 

[10], and to respond to the rising need of early 

identification of possible biowaiver drugs, in this 

work, we attempt to develop robust QSPR 

models to classify the solubility and permeability 

terms that compose the BCS (Figure 1). These 

models were rigorously validated on various 

published BCS class drug sets [5,9,11-13] and 

the feasibility of performing PBC prediction in 

early drug discovery is discussed. 
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Figure 1. Summary scheme of current in silico study 

 

2. Results and Discussion 

 

In 2004, a number of 123 orally administered 

drugs on the World Health Organization (WHO) 

Essential Medicine List (EML) were initially 

classified into BCS [9,11]. Later, 200 oral drug 

products in the United States, Great Britain, 

Spain, and Japan were classified based on 

published solubility data and permeability data 

estimated by calculated log P [12]. Recently, 

increasing attention has been turned out for 

determining the Provisional Biopharmaceutical 

location of orally administered immediate-

release (IR) drug products using different 

estimated gastrointestinal permeability, such as 

partition coefficients (log D and log P), 

molecular surface area (PSA) or other in vitro 

permeability.[14-17] It has been emphasized that 

the distribution of BCS class I, II, III, and IV in 

each classification are quite different. In this 

report, taking advantage of the availability of 

experimental in vitro Caco-2 cell data a 

Provisional Biopharmaceutical Classification 

(PBC) of 322 oral drug products gathered from 

literature was performed. To our knowledge, it is 

the largest data set for such classification. 

Classifications of current data are described in 

[7]. 

Physicochemical profiling of PBC. It is very 

useful to analyze the similarity between 

physicochemical spaces characterized by PBC 

classes, especially for developing computational 

predictions of current PBC and further BCS. 

Thus, six commonly used physicochemical 

parameters were calculated by Dragon and 

Volsurf+ for this analysis:[18,19] molecular 

weight (MW), polar surface area (PSA), Mlog P, 

log D6, log D7.5, total number of hydrogen bond 

donors and acceptors (nHA+B), number of free 

rotatable bonds (RBN), and estimated ionization 

states. The average and median values of 

maximum dose strength (Dmax) as well as Caco-2 

Papp were also analyzed for each class.  

Unsurprisingly, class II drugs display the 

highest lipophilicity, while class III and IV are 

more hydrophilic. Class I drugs represent a 

balanced physicochemical profile even though 

they tend to be more lipophilic. In general, only 

the hydrogen bonding term is fairly different 

from one class to another. There is certain 

physicochemical similarity between class I and II 

(Mlog P, log D at basic medium), class III and 

IV (nHA+B, PSA), or class II and III (MW), etc. 

Values of Dmax do not present any trend. It is 

demonstrated that poor bioavailability is more 

likely when the compounds violate two or more 

of the Lipinski’s rules (Ro5): (i) log P <5, (ii) 

MW< 500, (iii) HBD (hydrogen bond donors) < 

5, and (iv) HBA (hydrogen bond acceptors) < 

10.[20] Current data was collected mostly among 

successful drugs. Then, it is easy to understand 

that many of them (>95%) passed the Ro5. 

Computational models to predict PBC class 

from chemical structures. Solubility and Caco-

2 permeability were modeled independently. The 

final computational PBC classification was 
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achieved using two voting consensus 

(permeability and solubility) systems.  QSPR 

models obtained by different statistical 

techniques for each property are described 

below. 

Solubility modeling. Three model series were 

obtained using LDA, QDA and BLR. Different 

molecular descriptors (MDs) were used for 

building QSPR models. From every model series 

constructed with every technique, the best one 

was selected (detailed comparisons are described 

in supplement documents). Table 1 summarizes 

the mathematical equations and performances of 

the three best models for PBC solubility 

prediction. 

Permeability modeling. The same procedure 

was carried out to select the best classifiers for 

PBC permeability class. Table 2 displays the 

relevant information of permeability models. 

Classifications of four PBC classes. The two 

obtained voting models were finally combined to 

estimate the four PBC classes of the data (322 

compounds). Table 3 displays the confusion 

matrix of this consensus system. A good overall 

accuracy of 73.0 % was obtained by this system.. 

Analysis of molecular descriptors (MDs). 

Interestingly, the PBC solubility and 

permeability terms are well described using a 

small set of MDs.  

Table 1. Performances of the three best models for PBC solubility classification 

Technique 
Descriptor 

family 

MCC Accuracy Specificity Sensitivity Precision 
AUC (Ts)b 

% (Tr/Ts)a  

LDA (S1) 
0-2D Dragon 

plus Volsurf+ 
0.66/0.54 83.3/76.9 82.2/79.3 84.0/75.0 86.9/81.8 0.88±0.04 

QDA (S2) 0-2D Dragon 0.63/0.75 81.7/87.7 82.2/82.8 81.3/91.7 86.5/86.8 0.97±0.04 

BLR (S3) 0-2D Dragon 0.60/0.69 80.5/84.6 75.5/82.1 84.1/86.5 83.0/86.5 0.96±0.03 

VoteS All 0.68/0.87 84.4/93.9 85.0/89.3 84.0/97.2 88.7/92.3 – 

Mathematical equations 

CLASSDo(+/-) = –1.59 – 0.54×PˍVSAˍvˍ3 + 0.80×nArC=N + 0.65×C-005 – 0.84×CATS2Dˍ04ˍAL  

+ 0.79×DLSˍ04 + 4.51×ID3 + 0.28×A – 0.41×LgD5 

(S1) 

 

 N = 257 λ = 0.60 D2 = 2.74 F = 25.61 p < 0.0001  

CLASSDo (+/-) = –0.36 – 0.90×Me – 1.40×nCt – 0.79×NssNH + 1.22×BLTD48 + 0.87×DLSˍ04   

– 0.82×CMC-50 – 1.86×nArC=N×N-067 + 0.41×N-067×NssNH  

– 0.73×Me×CMC-50 + 0.51×nR102 

(S2) 

 N = 257 λ = 0.59 D2 = 2.88 p < 0.0001  

Ln (P+/P-) = 2.63 – 0.59×nCp + 4.44×nArC=N + 0.20×H-052 + 1.82×N-067 – 1.32×NssNH 

+ 1.09×BLTD48 + 4.58×LDSˍ04 – 1.38×CMC-50 – 0.38×nO (S3) 

aMeasured performances of training/test set; bArea under the ROC curve determined on test set by non-parametric 

assumptions in 95% asymptotic confidence interval. 

 

Table 2. Performances of the three best models for PBC permeability classification 

Technique 
Descriptor 

family 

MCC Accuracy Specificity Sensitivity Precision 
AUC (Ts)b 

% (Tr/Ts)a  

LDA (P1) 
0-2D Dragon 

plus Volsurf+ 
0.63/0.69 81.6/84.9 81.9/85.7 81.4/84.2 82.0/88.9 0.93±0.03 

QDA (P2) 0-2D Dragon 0.65/0.76 82.4/87.9 81.1/89.3 83.7/86.8 81.8/91.7 0.94±0.03 

BLR (P3) 
0-2D Dragon 

plus Volsurf+ 
0.64/0.73 82.0/86.4 79.5/89.3 84.5/84.2 80.7/91.4 0.92±0.03 

VoteP All 0.70/0.77 85.2/87.9 85.0/96.4 85.3/81.6 85.3/96.9 – 

Mathematical equations 

CLASSPapp(+/-) = –5.91 + 0.01×PˍVSAˍsˍ6 – 1.62×nRNR2 – 0.74×C-016 + 2.64×CATS2Dˍ08ˍAP  

+ 4.23×LLSˍ01 + 0.01×WN2 + 3.79×CACO2  

(P1) 

 

 N = 256 λ = 0.57 D2 = 2.81 F = 22.24 p < 0.0001  

CLASSPapp (+/-) = 0.32 – 1.02×GATS2m + 0.95×GATS2s – 0.55×nRNR2 – 0.52×B03[O-O]   (P2) 

http://sciforum.net/conference/mol2net-1


Mol2Net, 2015, 1(Section B), pages 1-11, Proceeding                         5               

http://sciforum.net/conference/mol2net-1 

 

– 1.95×SAdon + 0.82×LLS -01 + 3.46×nC=N-N<×B04[O-Cl]  

+ 0.37×nRNR2×SAdon + 0.32×CATS2Dˍ03ˍDD×SAdon – 0.46×B08[C-O]2 

 N = 256 λ = 0.55 D2 = 3.18 p < 0.0001  

Ln (P+/P-) = 5.49 – 2.05×nRNR2 + 3.74×CATS2Dˍ07ˍDP + 1.88×CACO2  – 5.04×GATS2m 

– 22.48×nFuranes – 0.02×SAdon – 1.05×nRCOOH (P3) 

aMeasured performances of training/test set; bArea under the ROC curve determined on test set by non-parametric 

assumptions in 95% asymptotic confidence interval. 

 

It is important to note that there are some 

MDs directly related to polarizability and 

dispersion forces within molecules (nCp, nCt), 

molecular size (nR10, P_VSA_v_3), lipophilicity 

and hydrophobicity (BLTD48, CATS2D_04_AL, 

CMC-50), and especially, the polar, chargeable 

and hydrogen bond forming capacity (A, Me, nO, 

nArC=N, C-005, N-067, NssNH, LgD5). Beside, 

rule based MDs, which represent common 

physicochemical combination trends of known 

drug-like and lead-like dataset,[21,22] are 

selected. Generally, current finding structure-

property (Do) relationship (SDoR) are rather 

similar with Khandelwal et al.’s analysis.[23] 

On the other hand, the ionization state 

(GATS2s, P_VSA_s_6, nRNR2), molecular size 

(GATS2m, nFuranes, C-016) and hydrogen bond 

donor and acceptor regions (nRCOOH, nRNR2, 

nC=N-N<, CATS2D_03_DD, CATS2D_07_D, 

CATS2D_08_AP, SAdon, WN2 etc.) are well 

correlated with Caco-2 permeability. The ADME 

descriptor CACO2 was selected two times in 

permeability models. Please note that numeric 

values of this variable are result of partial least 

square (PLS) discriminant analysis developed by 

Zamora et al.[24] Unfortunately, the use of this 

descriptor does not provide precise knowledge of 

descriptor impacts on PBC permeability class. 

Regulatory validation and applications of in 

silico PBC models. A robust forecast of PBC 

class is very useful in early drug discovery. 

Especially, for many NMEs whose therapeutic 

dose-ranges are not available in preclinical 

stages. This is also important for estimating 

possible BCS memberships, since there is a great 

correspondence between proposed PBC and BCS 

cited in regulatory guidelines [5].  

Table 3. Confusion matrix of consensus system for the prediction of PBC classes 

 

Predicted 

PBC Class I 

Predicted 

PBC Class II 

Predicted 

PBC Class III 

Predicted 

PBC Class IV 
Total 

Accuracy 

(%) 
MCC 

PBC Class I 61 11 18 1 91 67.0 0.62 

PBC Class II 10 59 2 5 76 77.6 0.67 

PBC Class III 7 4 74 12 97 76.3 0.63 

PBC Class IV 1 8 8 41 58 70.7 0.63 

Total 79 82 102 59 322   

Precision (%) 77.2 72.0 72.5 69.4    

  

Biopharmaceutical Screening Simulations 

Finally, a large database of drugs, clinical and 

non-clinical trial compounds was subjected to 

computational prediction using in silico PBC 

consensus model. A total number of 37,202 

compounds were analyzed (Figure 2). Recently, 

this database was classified by in silico BDDCS 

consensus models to estimate the distribution of 

BDDCS class.[10] In contrast to that study, 

obtained models here are employed for 

comparing the predictions and then making a 

round estimation of the distribution of BCS class. 

It is important to note that some compounds 

obtained non-conclusive-classification due to 
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their condition of outliers of Ads. 1699 

compounds (4.6% of prediction data) are 

classified as I/II, I/III, II/IV, and III/IV. Most of 

them (1512 compounds) are low-activity (W6) 

and high-activity (W9) compounds.[10] 

Especially, 29 compounds could not be classified 

by in silico models. Among those conclusively 

predicted as PBC class I, II, III and IV, there 

exists similar proportion between launched and 

clinical phase 3 drugs, between clinical phases 1 

or 2 drugs and W6 or W9 compounds. 

As can be appreciated from Figure 3, more than 

40% of drugs and phase 3 are similar to PBC 

class I. The phase 3 compounds similar to PBC 

class II significantly overcome the PBC class III 

but for drugs, their percentage become similar. 

Compounds classified as PBC class IV take the 

minimal proportion in the two drug sets (7-8%). 

In contrast, about 50% of phase-1 and phase-2 

drugs are predicted as PBC class II. This 

percentage is even greater (62-63%) in W6 and 

W9 datasets. Compounds predicted as PBC class 

I maintain the same proportion with respect to 

phase 1, 2, W6 and W9 whole dataset. There is a 

noticeable change of the predicted PBC class III 

for phase 1 and 2 drugs (15-18%) compared to 

W6 and W9 (7%) compounds. Particularly, 

compounds of W6 data set, predicted PBC class 

IV compounds outnumber those of predicted as 

PBC class III. These trends of PBC class 

predictions reflect the drug development process 

and agree, in turn, upon some points with 

previous findings.[10,25] 

 

Figure 2. William’s plots based on solubility and permeability models for training and screening large 

medicinal-chemistry database 

 

3. Materials and Methods 

Data set. BCS based-provisional classification 

requires both solubility and permeability 

measurements. In this work, a set of 322 drugs 

was obtained from published works. A 

provisional classification was executed by means 

of an extensive literature revision of 

experimental values and assigned classes, as 

follows. 
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Solubility data. The drug solubility data (in 

mg/mL) can be obtained from standard 

references,[9] such as the Pharmacopeia [26] or 

the Merck Index.[27] Due to the extensive 

survey, herein we only report the lowest 

solubility under the conditions listed above. In 

addition, scale-up guidelines were taken from 

Kasim et al. whenever solubility data was not 

available or was undefined.[9] 

Maximum Dose Strength. Two reference 

sources were mainly used for searching values of 

maximum dose strength (mg): (i) the WHO 

Model List of Essential Medicines,[28] and (ii) 

Orange Book.[29] For drugs that are not included 

in these documents or exist in different market 

presentations, the first introduced strengths were 

revised and used as highest dosages. Doses in 

mg/kg were transformed into mg assuming 70Kg 

as body weight.  

Dose Number Calculations. The dose number 

(D0) was calculated using the following equation 

S

VM
D

)0/0(
0       (1) 

where, M0 is the highest dose strength (mg), S is 

the aqueous solubility (mg/mL) under conditions 

mentioned above and water volume V0 is 

assumed to be 250 mL.[1,9] Drugs with D0 ≤ 1 

were classified as high-solubility drugs. 

Conversely, drugs with D0 > 1 were assigned as 

low solubility drugs.[9] 

Permeability Estimations. In this work, in vitro 

Caco-2 cell permeability is used to classify drug 

according to BCS. For this purpose, we take 

advantage of our previous research where an 

extensive literature survey of this kind of data 

was processed.[30] Besides, we have adopted the 

same method proposed by Kim et al.,[31] taking 

the average permeability value of Metoprolol 

(average apparent permeability Papp = 20×10-6 

cm/s) for benchmarking the high permeability 

class boundary. Due to the large revised 

literature, the mean values were listed, excluding 

those laid outside of the mean±2SD (standard 

deviation) ranges. Additionally, available data 

obtained on both directions apical to basolateral 

(Papp, A-B) and viceversa (Papp, B-A) were taken into 

account. 

Computational methods. Taking all above 

together, in this work efforts have been made to 

establish really useful statistical predictors for 

BCS classes of NMEs based on two separate 

model series of dose number and Caco-2 cell 

permeability. To attain this purpose, the 

following computational procedures should be 

considered: (i) suitably computing 

physicochemical and molecular descriptors, (ii) 

rational selection of training and test sets, (iii) 

establishment of modeling strategy and 

appropriated variable selection, and (iv) 

ascertainment of BCS predictions for NMEs in 

the context of regulatory statements. 

Molecular descriptor calculations. 803 simple 

(0-2D) descriptors belonging to 29 families 

implemented in Dragon software version 6.0,[19] 

and 126 molecular descriptors in VolSurf+ 

version 1.0.4 [18] were calculated. 

Model building and feature selection. Three 

statistical classification algorithms were applied 

in order to detect all possible (linear or non-

linear) relationships between 

solubility/permeability and computed 

parameters: LDA (Linear Discriminant 

Analysis), QDA (Quadratic Discriminant 

Analysis) and BLR (Binary Logistic Regression). 

Performances of models were evaluated using 

false positive rate (FPr), true negative rate (TN, 

for specificity), true positive rate (TP, for 

sensitivity), Matthews Correlation Coefficient 

(MCC) and predictive accuracy, as defined 

below: 

Specificity = TN/(TN+FP)    (2) 

Sensitivity = TP/(TP+FN)     (3) 
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Precision = TP/(TP+FP)    (4) 

MCC = [(TP×TN) × 

(FP×FN)]/[(TP+FP)(TP+FN)(TN+FP)-(TN+FN)]1/2

       (5) 

Accuracy = (TN+TP)/(TN+TP+FN+FP)  (6) 

For reliable predictions of these three external 

datasets, it is important to consider all 

applicability domains (ADs) defined by the 

chemical spaces of the training set. There are 

many approaches for AD estimation.[32] Here, 

the leverage approach, a geometric method 

commonly used for QSAR problems, was 

employed. The leverage of a compound in the 

original variable space is defined as hi = 

[X(X’X)-1X’], where X is the descriptor matrix 

derived from the training set descriptor values. 

The warning leverage (h*) is defined as 

h*=3(p+1)/n, where n is the number of training 

compounds, and p is the number of predictor 

variables [32]. Compounds with hi > h* were 

observed to reveal their influence on 

classification performance. It is not necessary to 

exclude them from predictions although they 

appear to be outside AD. However, compounds 

are considered to be outliers if they lay outside 

the ±3 standardized residual (δ) range [32]. 

 

Figure 3. . Distribution comparison of 

computational PBC assignments of launched 

drugs, compounds in different drug development 

stages (phase 1, 2, 3), and bioactive micromolar 

(W6) and nanomolar (W9) compounds.[10]

4. Conclusions 

In this report, a systematic study was carried 

out in order to standardize a BCS-based 

provisional classification of 322 drugs and 

develop computational predictions of BCS class 

for NMEs. It is of great interest to assign as soon 

as possible the probable BCS class of a drug 

candidate. By using extensively revised 

references of solubility and in vitro Caco-2 

permeability, a very commonly used preclinical 

assay in pharmaceutical industry, a better in vivo 

BCS classification of drugs is anticipated. 

Consequently, the classification results in this 

study display a high concordance with BCS 

classification of common regulatory authorities 

(WHO, FDA). Other classification schemes were 

compared with PBC. Large additional 

information concerning the BCS classification of 

current data was analyzed in order to identify 

advantages as well as limitations when using 

PBC. As an attempt to develop QSPR models 

able to predict the PBC class, it was 

demonstrated the possibility of screening NMEs 

in the early phase of drug development.A 

combination of in silico and in vitro approaches 

provides a basis for robust estimation of the BCS 

class of NMEs without clinical information and 

contribute to early selection of biopharmaceutical 

promissory drug candidates. As a relevant 

limitation, this data set consists of a small 

number of drugs. Besides, the uncertainty of the 

relationship between absorption extent and 

proposed provisional classification (especially 

for low absorbed drugs) remains. A modification 

of BCS classification scheme (particularly for 
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class II and III) is needed. A further compilation 

of in vitro permeability data and aqueous 

solubility may enhance the applicability domain 

of in silico classifications.Main text paragraph. 

. 
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