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Abstract: Cytosine DNA methylation (CDM) is a highly abundant epigenetic heritable but 

reversible chemical modification to the genome. Herein, a machine learning approach, was applied 

to analyze the accumulation of epigenetic marks in 150 methylomes from Arabidopsis thaliana 

ecotypes.  We hypothesize that these marks are chromosomal footprints that account for different 

ontogenetic and phylogenetic and histories of individual members of the sampling population.  Our 

results support this hypothesis and suggest a statistical-physical relationship between CDM 

changes and single nucleotide polymorphism (SNPs). Furthermore, the genome-wide 

redistribution of CDM changes ensures the thermal stability of the DNA molecule preserving the 

integrity of the genetic message continuously stressed by thermal fluctuations in the cell 

environment. 
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1. Introduction  

Cytosine DNA methylation (CDM) is one of 

the molecular processes that result in epigenetic 

modifications to the genome. In particular, 

cytosine methylation is a widespread regulatory 

factor in living organisms. Changes introduced by 

DNA methylation can be inherited from one 

generation to the next. Some methylation changes 

can regulate gene expression and cause genomic 

imprinting [1,2]. Cytosine methylation arises 

from the addition of a methyl group to a cytosine’s 

C5 carbon residue. Distinct pathways regulate 

methylation status by the action of 

methyltransferases [3]. The addition or removal of 

a methyl group to a cytosine C5 residue produces 

a change of information that is recognized by the 

molecular transcription machinery and can be 

verified by current sequencing technologies [2]. 

However, it is still undefined whether or not the 

observed methylation changes could be linked to 

genome-wide information patterns. 

The development of DNA bisulfite conversion 

methodology coupled with next-generation 

sequencing approaches (Bis-seq) allows 

determination of the methylation status of nearly 

every cytosine in a genome. In this way, the 

methylation status of particular cytosine sites is 
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often expressed in terms of methylation level

 iiii nonCCCp ###  , where iC# and 

inonC# represent the numbers of methylated and 

non-methylated read counts observed at the 

genomic coordinate i , respectively. At tissue 

level, the methylation status (methylated or non-

methylated) of cytosine iC at the genomic 

coordinate i  can be analyzed as a random variable 

that takes value “methylated” with probability ip

and “non-methylated” with probability ip1 . 

Then, the formula 

       i iii xplogxpxpH 2  (1) of 

Shannon’s entropy of a random event with 

probability distribution  ixp  can be applied to 

estimate the uncertainty of the methylation events 

at given cytosine site i  as: 

           iiiii CplogCpCplogCpCH  11 22
(2). 

The entropy defined by Eq. 2 is therefore the 

expected value of the logarithm base 2 of the 

methylation level [4]. Assuming that, as a result 

of variations in environmental conditions, a 

change of methylation status in a genomic region 

R takes place, the uncertainty decrease in the 

genomic region R leads to a gain of information 

given by: 

     


Ri

before

iRi

after

iR CHCHI   (3) 

Where 
before

iC  and 
after

iC stand for the 

methylation status before and after the variations 

of environmental conditions, respectively [5]. 

Eq.3 expresses an information theoretical derived 

concept with a thermodynamic and biophysical 

meaning [5,6]. 

Herein, our study is focussed in the analysis of 

the genome-wide CDM information patterns 

induced by the changes in the enviromental 

conditions. In particular, we analyzed whether or 

not these information patterns carry 

discriminatory information in the form of 

chromosomal footprints. 

2. Results and Discussion 

The genome-wide evaluation of Eq.3 indicates 

the existence of methylation hotspots along the 

chromosomes (Fig.1). Genomic regions (GRs) 

can be classified according to the value of the RI

as: 1) highly variable methylation regions, 2) 

variable regions, and 3) low variable or constant 

regions. The regions with information gain 

(orange to black lines in the heatmaps color bar) 

or loss (light yellow to sky-blue) (Fig. 1) are 

observed at specific positions with a high line 

density in the pericentromeric region. The lines in 

yellow correspond to regions where the difference 

between the entropies 
ecotype

RH  and 
0Col

RH is close 

to zero. According to Eq. 3, methylation hotspots 

are the ecotype chromosomal regions with a 

remarkable decrease in uncertainty with respect to 

Col-0. 

Methylation hotspots shared by a set of 

individuals at fixed chromosomal positions 

suggest the existence of specific informative 

landmarks (Fig. 1 and 2). That is, most of the 

CDM changes observed in natural variation and 

silencing mutants occur at specific methylation 

GRs, which are delineated in the heatmaps as 

chromosomal landmarks. These landmarks 

frequently cover transposable elements (TEs) and 

protein-coding regions (Fig. 2). 

Discriminatory Informative Patterns in 

natural Arabidopsis ecotypes 

The heatmaps suggest the existence of specific 

landmark informative patterns in all 

chromosomes across the ecotype samples that 

may or may not be shared by several individuals.  

These patterns comprise chromosomal regions 

carrying discriminatory information. That is, it is 

possible to distinguish between the individuals 

and among subsets of individuals by considering 

their discriminatory information patterns. 

Figure 1. Methylation hotspots along 

chromosome 5 from 150 Arabidopsis thaliana 

ecotypes [7]. The color bar indicates the 
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magnitude of RI values.

 

Applying hierarchical clustering based on the 

levels of C-DMRs, Schmitz et al. [7] found that 

the 150 Arabidopsis thaliana ecotypes from North 

America and Asia reflect their geographical 

distributions. Herein, the consecutive application 

of principal component analysis (PCA) and linear 

discriminant analysis (LDA) to the same ecotype 

set supports the hypothesis that the landmark 

patterns constitute chromosomal footprints that 

may account for ontogenetic and phylogenetic 

differences among individuals (Fig.3 A and C). 

This analysis supports not only the ecotype 

classification according to their geographical 

location for North America and Asia [7]), but also 

for all geographical regions. 

These footprints are not only connected to the 

environment, but also to the single nucleotide 

polymorphisms (SNPs) detected throughout the 

DNA sequences (Fig.3 B and D). The 

classification of the Arabidopsis thaliana 

ecotypes according to their geographical 

distribution was retrieved not only from their 

landmark patterns, but also from their SNPs 

patterns (Fig.3). A summary of the classification 

results is presented in Table 1. 

The similarity between the hierarchical 

clusters suggests that some statistical-physical 

relationship must exist between the SNPs and 

methylation changes. The two (2D) and three-

dimensional (3D) kernel density plots presented in 

Fig.4 support the last hypothesis. The 2D kernel 

density plots indicate that the frequency of 

normalized read-counts supporting SNPs decrease 

with the increment of methylation changes, 

expressed here in terms of gain or loss of 

information RI (Fig. 4A). This statistical trend is 

emphasized in the empirical 3D kernel density 

plots (Fig. 4B) and in the modelled Farlie-

Gumbel-Morgenstern copula distribution built 

from the non-linear fit of the marginal 

distributions (Fig. 4C). 

Figure 4 suggests that most of the observed 

CDM changes tend to preserve the integrity of the 

message carried by the DNA molecule, which is 

challenged by thermal fluctuations in the cell 

environment. This is consistent with the report that 

CDM changes alter the mechanical properties of 

the DNA molecule [8]. Thus, a statistical-physical 

relationship between CDM changes and SNPs is 

expected. Indeed, depending on the DNA sequence 

context, the addition or removal of a methyl group 

to a cytosine residue could increase or decrease the 

local thermodynamic stability of the DNA 

molecule and the nucleosomes [8–12]. The density 

plots of the experimental data indicate that the 

greatest frequency of SNPs is found in those GRs 

where the methylation status remains unchangeable 

with respect to the control (Col-0, Fig. 4).
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Figure 2. Annotation of several hotspots on chromosome 2 from eigth Arabidopsis gene 

silencing mutants involving methylation.  

 

 

 

Figure 3. Classification of the Arabidopsis thaliana ecotypes according to their 

geographical distribution. A and B, LDAs based on RI and SNPs, respectively. C and D, 

fan dendrograms based on the individual coordinates estimated from the LD functions. The 

dendrograms were built by applying hierarchical clustering with Euclidean distance and 

UPGMA as agglomeration method. 
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Table 1. Performance of the classifications presented in Fig. 3. 

Sample a Classifier 
Accuracy 

Mean 

2.5% 

quantile 

97.5%  

quantile 

CG ecotypes 

(2482 DIRs) 

AUC+PCA+LDA 93.08352 88.05678 97.4359 

AUC+PCA+SVM 93.52517 91.83673 95.2381 

AUC+SVM 96.42381 95.91837 96.59864 

SNPs ecotypes 

(2590 DIRs) 

AUC+LDA 90.85758 85.42125 95.89744 

AUC+PCA+SVM 95.01642 94.02985 96.26866 

AUC+SVM 95.77007 95.23810 95.91837 

a 1000 ten-fold cross-validations were performed for each classifier. 

 

 

Figure 4. A: 2D kernel density plot. B: 3D kernel density plot. C: 3D plot of the density 

probability distribution of the Farlie-Gumbel-Morgenstern copula built from the non-linear 

fit of the marginal distributions estimated for RLC  (a Weibull PDF) and RI  (a Skew-

Laplace PDF). These estimations were performed for several Arabidopsis ecotypes. The 

results for the ecotypes La-0 and Fr.2 are shown. 

 

 

 

Hence, for an Arabidopsis plant, the adaptation 

to a new environment implies a genome-wide 

redistribution of CDM changes that will ensure 

the thermal stability of DNA. These are frequent 

methylation changes, which dynamically can vary 

from cell to cell in the same tissue. CDM changes 
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induced by thermal fluctuations are the simplest 

natural explanation to the “spontaneously 

occurring variations” of DNA methylation in 

Arabidopsis thaliana plants propagated by single-

seed descent throughout generations [13,14]. 

An important subset of CDM changes 

regulates the process of gene expression and 

functional adaption to the environment [12]. 

These are specific molecular signals from the 

regulatory methylation machinery. At this point, 

the challenge is whether or not we would be able 

to sort out the regulatory methylation signals from 

the CDM background (“noise”) induced by 

thermal fluctuations. This challenge has been 

already confronted (although in a different field, 

see references [15,16]) and a concrete application 

in the context of CDM is illustrated in Fig. 5. It is 

not possible to separate the regulatory methylation 

signal from the CDM background induced by 

thermal fluctuation. Even a simple regulatory 

methylation change could alter the mechanical 

properties of the DNA molecule [2,8,10] and, 

consequently, it could require an additional local 

readjustment. Therefore, the receiver (a device 

used by the experimenter to detect the signal) 

must set up a criterion for response, in this case, a 

threshold level of activity in its sensor (i.e., a 

function of the methylation levels). This threshold 

in combination with the PDFs for noise and signal 

plus noise determine the probabilities of correct 

detection [17] (Fig. 5). 

Hence, any statistical analysis of the regulatory 

signals of CDM changes must consider the 

statistical thermodynamics subjacent to the 

methylation process. This concept conveys a 

suitable approach to discriminate the regulatory 

signals from the “noise” induced by the thermal 

fluctuations. 

 

Figure 5. Signal detection in noise according to 

reference [15,16] and, here, applied to the 

detection of regulatory CDM signals. 

 

3. Materials and Methods 

Equation 3 was used to compute the RI  for 

several samples with methylation data available in 

online databases (see below). 

Arabidopsis thaliana methylation data 

According to Eq. 3, RI is computed for a 

subject sample with respect to a given reference 

sample. The RI values were computed for 150 

Arabidopsis ecotypes [7]. The TSV files taken 

from NCBI GEO under accession GSE43857 [7] 

were read and transferred to R software version 

3.2.1 [18] by using the Bioconductor (version 

2.14) R-package GenomicFeatures [19]. Ecotype 

Col-0 was used as reference (152 ecotypes 

including Col-0). The mutant data used in Fig. 2 

were reported in reference [20] (GEO accession 

numbers GSE39901). 

Machine learning approach 

To test the hypothesis that different 

environmental conditions must leave different 

landmark patterns on chromosomes, a machine 

learning approach was followed.  

The estimation of the area under the ROC 

curve (AUC) for the current multiple-class 

classification problem was performed according 

to reference [21] and applied to reduce the space 
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“Noise” induced by 
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dimension and to detected potential discriminant 

informative regions. This method was applied by 

using the R-package HandTill2001. Principal 

component analysis (PCA) was also used to 

reduce space dimensions.  

AUC and PCA outputs were used with two 

classifiers: linear discriminant analysis (LDA) 

and support vector machine (SVM). These 

computations were performed by using the R-

packages adegenet and e1071, respectively. 

Logarithm of the normalized reads counts 

The lists of SNPs and 1-bp deletions with a 

quality score of 25 and above of each ecotype 

samples were taken from 1001 Genomes Data 

Center (http://1001genomes.org/datacenter/; 

http://1001genomes.org/data/Salk/releases/). For 

a given number of non-repetitive reads supporting 

the base substitution  (𝑟) , the normalized reads 

counts (𝑟𝑁)  were estimated as  𝑟𝑁 =

 𝑟 𝐶𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒, where 𝐶𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒 stand for 

the read ratios supporting a predicted feature to 

the total coverage. Next, the sum of logarithm 

base 2 of DNA-base substitution counts at a given 

region 𝑅 was computed as: 

 


Ri NR i
rlogLC 2   4.

4. Conclusions 

 

 

The CDM changes observable at the heatmaps do not take place at random genomic regions, but at 

specific locations in chromosomes, hotspots of methylation changes, which are noticed as chromosomal 

landmarks in the heatmaps. The phylogenetic and ontogenetic history of each individual is reflected in 

the variations of landmark patterns, which like footprints carries discriminatory information about the 

individual. 

Results indicate that, as a statistical tendency, most of the CDM changes preserve the thermodynamic 

stability of the DNA molecules. In addition, our study also leads to a new open practical problem: the 

discrimination between the regulatory methylation signals from the CDM background (“noise”) induced 

by thermal fluctuations. 
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