

The symmetry-adapted configurational ensemble approach to the computer simulation of site-disordered solids

Ricardo Grau-Crespo

University of Reading, UK <u>r.grau-crespo@reading.ac.uk</u>

Said Hamad

University Pablo de Olavide Seville, Spain

Mol2Net, 2015

University of Reading, UK

© 1998 Microsoft Corp. All rights reserved.

Edward Guggenheim (1901-1970)

- Solution energies usually wrong too

- Large cell required
- Temperature independent

(and parallelisable)

statistical mechanics

- Temperature dependence via

Classification of methodologies for modelling site-disorder

Disorder representations			Average-ion	Supercell	Ensemble
	Geom. <u>relax.</u>	Elect. <u>relax.</u>			
Energy as a function of site occupancies	No	No	-	-	Ising-like models, Cluster Variation Method (CVM)
Energy from classical interatomic potentials	Yes	No	Mean-field approach in GULP	Random or arbitrary distributions	
Energy from QM calculations	Yes	Yes	Virtual Crystal Approximation (VCA)	Random or arbitrary distributions, Special quasi- random structures (SQS)	

R. Grau-Crespo and U. V. Waghmare. "Simulation of crystals with chemical disorder at lattice sites" In: *Molecular Modeling for the Design of Novel Performance Chemicals and Materials*. Ed. B. Rai. CRC Press Inc. (2012).

Why IP or QM in ensemble calculations?

- Some interactions are difficult to parameterise in cluster expansion models (e.g. long-range interactions in ionic solids, strong geometric relaxations, changes in electronic configurations, etc.)
- IP and QM methods provide not just energies but also other properties for each configuration (e.g. local geometries and cell parameters, electronic structure, spectra). Configurational averages can then be obtained.
- They allow to directly evaluate vibrational properties of the disordered solid.
- They also allow to extend the simulations to solid surfaces, which is non-trivial with simpler interaction models.

Statistics in the configurational space: basic formulation

 E_n

 $P_n = \frac{1}{Z} \exp(-E_n / kT)$ n = 1, ..., N (total number of configurations)

$$Z = \sum_{n=1}^{N} \exp(-E_n / kT) \qquad F = -kT \ln Z$$

$$E = \sum_{n=1}^{N} P_n E_n$$

For any property $A = \sum_{n=1}^{N} P_n A_n$

$$S = \frac{E - F}{T} = \dots = -k \sum_{n=1}^{N} P_n \ln P_n$$

The main problem is the high number of configurations

Dealing with the configurational barrier

Random sampling

Importance sampling / Monte Carlo (sample is biased; statistics is different). Symmetry-adapted ensembles (reduces size of configurational space by ~two orders of magnitude)

How to take advantage of the crystal symmetry?

- Only **inequivalent configurations** have to be calculated, if their degeneracies Ω_m are known *a priori*. Then:

$$P_m = \frac{\Omega_m}{Z} \exp(-E_m / kT)$$

- Two configurations are equivalent if they are related by an **isometric transformation**.

- All possible isometric transformations are contained in the **symmetry group of the parent structure** (including supercell translations).

Taking advantage of the supercell symmetry

sod (site – occupancy disorder) package

Grau-Crespo et. al. Journal of Physics - Condensed Matter 19 (2007) 256201

Bulk and surface of ceria-zirconia solid solutions

(with U. Waghmare and N. H de Leeuw)

Ce_{1-x}Zr_xO₂ has replaced pure ceria in three-way car exhaust catalysts

What happens to the cation distribution at the high temperatures (up to 1373 K) of close coupled converters?

SOD+VASP (DFT) calculations

Enthalpy of mixing: The formation of the solid solution is strongly endothermic

Free energy of mixing:

Calorimetric experiments: Lee, Navrotsky *et al.* J. Mater. Res. (2008) **Solid solutions used in applications are metastable** (Maximum stable Zr content at 1373 K is ~2 mol%)

Ceria – zirconia surface calculations (SOD + VASP)

$$f = \sum_{n=1}^{N} P_n f_n$$

Calculated Zr content at different layers as a function of composition and temperature

R Grau-Crespo, NH de Leeuw, S Hamad, UV Waghmare, *Proc. Royal Soc. A* 467, 1925-1938 (2011)

$Co_3Sn_{2-x}In_xS_2$ solid solutions

University of **Reading**

in collaboration with the group of Prof. Anthony V. Powell (Reading)

Shandites are a family of structurally-related materials of general formula A₃M₂X₂ (A = Ni, Co, Rh, Pd; M = Pb, In, Sn, Tl; X = S, Se).

•Low thermal conductivity due to their sudo 2-dimensional layered structure

•In doping of Sn in $Co_3Sn_{2-x}In_xS_2$ was performed changing the electron count by two across the composition range

Reading $Co_3Sn_{2-x}In_xS_2$ solid solutions 5.40 1.0 **Experimental data Full order** 5.35 Full disorder a/Å 0.8 DFT + SOD Fraction of In 5.30 0.6 -o- DFT Experiment 5.25 0.4 *M*(1 13.6 0.2 0.0 13.2 -o- DFT Experiment 0.5 2.0 1.0 1.5 1.0 2.0 0.0 0.0 0.5 1.5 x in $Co_3Sn_{2-x}In_xS_2$ x in $Co_3Sn_{2-x}In_xS_2$

Chem. Mater. **2015**, 27 (11), 3946–3956.

Hydrogen vacancies in MgH₂

(With Umesh Waghmare, Kyle Smith and Tim Fisher)

α phase: Metallic Mg with interstitial H

β phase: Ionic MgH₂

Very slow H diffusion in β phase!

MgH₂ rutile-like structure

Chains of MgH_6 octahedra sharing edges along the c axis.

2x2x2 supercell employed in calculations:

16 Mg and **32-***n* H atoms,

n is the number of vacancies in the supercell

DFT (VASP) calculations - there are F centres

Electronic structure of H vacancies in MgH₂

Configuration energies

Vacancy species: VFE(eV)

o-vacancy	1.41
acancy of type I	1.04
acancy of type II	1.13
i-vacancy	1.07
	o-vacancy acancy of type I acancy of type II i-vacancy

Introducing the grand-canonical formulation:

Probability of the m^{th} configuration with n vacancies is:

$$P_{nm} = \frac{\Omega_{nm}}{\Xi} \exp\left(-\frac{E_{nm} - n\mu}{k_B T}\right)$$

 μ is the H chemical potential in the gas phase:

$$\mu = -\frac{1}{2}g_{H_2}(T, p_{H_2}) \approx -\frac{1}{2} \left(E_{H_2}^{DFT} + ZPE + \Delta g_{H_2}(T, p_0) + k_B T \ln \frac{p_{H_2}}{p_0} \right)$$

Equilibrium concentration of vacancies as a function of $p_{\rm H2}$ and T:

$$\delta = \frac{1}{N} \sum_{n} n \sum_{m} P_{nm}$$

Theoretical pressure – composition isotherms in MgH_{2-x}

- Very low concentration of vacancies, which explains slow diffusion kinetics
- More mono-vacancies than di-vacancies!

Phys. Rev. B 80 174117 (2009)

An alternative mechanism

for vacancy formation: doping with monovalent ions

(Kröger–Vink notation)

Concentration of free vacancies vs dopant molar fraction

K. Smith, T. S. Fisher, U. V. Waghmare and R. Grau-Crespo, Phys. Rev. B 82, 134109 (2010)

Impurities in aragonite: Measuring climate change from coral fossils

(in collaboration with Nora de Leeuw's group)

Adapted from Gagan et al. *Quaternary Science Reviews* 19 (2000) 45-64

• Sr content of coral fossils correlates with sea surface temperature (SST) during biomineralization (paleothermometer)

• Doubts about thermodynamic stability of this Sr content in coral skeleton material (aragonite CaCO₃)

formation of strontianite SrCO₃?

Configurational spectrum for $Sr_{0.125}Ca_{0.875}CO_3$,

Highly but not completely disordered.

- Classical interatomic potential calculations using GULP
- Vibrational effects included in the thermodynamic analysis.
- Full range of compositions in the solid solution.

Free energies of mixing

$$\Delta G_{\text{mix}} = G[\text{Sr}_{x}\text{Ca}_{1-x}\text{CO}_{3}] - (1-x)G[\text{CaCO}_{3}] - xG[\text{SrCO}_{3}]$$

$\Delta G_{\min}(x,T)$ / kJmol⁻¹ 400 -0.2 -0.4 380 -0.6 360 0 T/K0.2 340 0.4 320 0.6 Y 0.8 $x_{\rm A} = 0.12$ 1 300 $x_{\rm S} = 0.87$ miscibility gap

$$G[Sr_xCa_{1-x}CO_3] = k_B T[x \ln x + (1-x)\ln(1-x)] + x(1-x)[A_0 + A_1(1-2x) + ...]$$

ideal

Excess (E. A. Guggenheim, 1937

Sr in aragonite **thermodynamically stable** with respect to phase separation

Mg in aragonite CaCO₃

The grand-canonical approach in equilibrium with aqueous solution

- Mg in corals offers more resolution in paleothermometry correlations
- But trends less reproducible Mg not in aragonite bulk
- In surface?

Chem. Eur J. (2012)

Equilibrium Mg content in aragonite depends on particle size and morphology (and of Mg content in solution - inset)

Other applications of the SOD methodology:

https://sites.google.com/site/rgrauc/sod-program

Including materials for:

- Batteries (Saiful Islam's group in Bath)
- Solar cells (Aron Walsh's group in Bath)
- Thermoelectric (Sands's group in Purdue, USA)
- Superconductivity (Illas's group in Barcelona)
- Biomaterials (Nora de Leeuw's group)
- And more minerals (Angeles Fernandez, Oviedo)

Acknowledgements

- Dr Rabdel Ruiz-Salvador (Universidad Pablo de Olavide, Seville, Spain)
- Prof. Nora de Leeuw (Cardiff University, UK)
- Prof. Richard Catlow (UCL, UK)
- Prof. Umesh Waghmare (JNCASR, Bangalore, India)
- Prof. Tim Fisher (Purdue University, USA)

EPSRC for funding projects and students

Royal Society (International Collaboration Scheme) and British Council (UKIERI) for funding collaboration with Umesh Waghmare (JNCASR)

UK Materials Chemistry Consortium and for access to the UK National Supercomputing Facilities.

Grau-Crespo's Research group, Summer 2015