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Abstract: Different research projects around the world are trying to emulate the human brain. 

They employ diverse types of computational models: digital models, analog models and hybrid 

models. This communication includes a summary of some main projects, as well as future trends 

in this subject. It is focused on various works that look for advanced progress in Neuroscience 

and still others which seek new discoveries in Computer Science (neuromorphic hardware, 

machine learning techniques). In addition, given the proven importance of glial cells in 

information processing, the importance of considering astrocytes into the brain computational 

models is pointed out. 
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1. Introduction 

The first computational brain models were 

created with the goal of reproducing this 

extraordinary organ, in order to understand and 

mimic the way the information is processed, as 

well as its energy efficiency [1-9]. From these 

works, basically two scientific disciplines 

emerge: the connectionism branch of Artificial 

Intelligence, which is aimed at developing 

algorithms based on neural networks to process 

the information, and Computational 

Neuroscience which seeks to create realistic 

models of the brain. In the seventies the field of 

Brain Machine Interface (BMI) also emerged, 

whose purpose was to create systems that 

connected the brain directly to an external 

device. At the same time, a branch of 
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Neuroscience, known as Neuroprosthetics, was 

formed, which sought to build artificial devices 

to replace the functions of nervous systems 

which are damaged in patients. At the end of the 

eighties, Carver Mead [10, 11] proposed the 

concept of Neuromorphic Engineer to describe 

the use of Very Large Scale Integration (VLSI) 

systems which contained analog circuits to 

mimic the neurons.  

All these scientific disciplines have tried to 

model the brain in one way or another. Over the 

past century, many experts in these fields have 

predicted that in 10 or 20 years a computational 

system comparable to the human brain would be 

built. But all these predictions had failed because 

of the technological limitations and the 

underestimation of the brain capacity. Although 

IBM ran the first simulation with approximately 

the same number of neurons as the human brain, 

the neuron models were very simple and the 

simulation was x1542 times slower than in real 

time [12]. However, it should be pointed out that 

until now in most computational brain models 

the capacity to process the information from the 

other half of the brain, containing 84 billion glial 

cells [13], has not been taken in consideration. 

According to the Neural Doctrine, neurons are 

the only cells in the nervous system involved in 

information processing, and the glial cells only 

play a support role. But over the past two 

decades this theory has started to be seriously 

debated. Some discoveries have demonstrated 

the capacity of the glial cells to participate in 

information processing [14-17]. In this 

communication, some works focused on 

implementing artificial astrocytes in the brain 

models are referenced. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Brain Model classification. 

 

 

2. Models Classification 

 

Classifications of brain models can be 

performed from different perspectives. In this 

communication, different computer models that 

have been classified from the point of view of 

signal processing by hardware are currently 

under development, such as: digital models, 

analog models and hybrid models. 

This classification is shown in Figure 1.  

• Digital models: they compute information 

using the binary system to simulate and 

parallelize the behavior of the brain cells. From 

the software models, the realistic computer 
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models are first considered, which are those 

shaping the internal structure of the cells (ion 

channels, organelles, etc.) allowing the study of 

their functions/operations. The generation of 

action potentials, activation of neurons, and 

synapse creation are simulated by mathematical 

equations implemented in the software, with 

specifically-designed tools. In addition, the 

connectionist models are taken into account, 

which, given a known behavior is expected to be 

achieved, such as a classification, object 

recognition in images, regression, etc., allow 

searching for a structure of artificial process 

elements (neurons and/or astrocytes) that give 

sufficient rise to such behavior. With regard to 

digital hardware models, they propose new 

computer architectures based on brain 

functioning. 

• Analog models: they consist of 

neuromorphic hardware elements where 

information is processed with analog signals, that 

is, they do not operate with binary values, as 

information is processed with continuous values. 

This allows computation to be more efficient, so 

that analog computation could be used in 

applications where energy efficiency is very 

important. 

• Hybrid models: they have been classified 

as such those assembled using hardware 

composed of both analog and digital 

components. These models seek to make the 

most of each type of computer. 

 

Projects Name Institution 
Num. 

neurons 

Type of 

neurons 

Simulated 

synapses 
Objectives Duration Refs. 

D
ig

it
a

l 
M

o
d

el
s 

S
o
ft

w
a
re

 Human Brain 

Project 

European 

Union 
106 

Hogdking & 

Huxley 
5x108 1, 2, 3, 4 2005 18 

SPAUN 
Univ. 

Waterloo 
2.5x106 

Leaky integrate-

and-fire 
1012 1 2012 19 

H
a
r
d

w
a
re

 SpiNNaker 
Univ. 

Manchester 
2.5x105 

Point neuron 

models, leaky 

integrate-and-

fire, Izhikevich's 

models 

8x107 1, 2, 3, 4 2005 20 

SyNAPSE IBM 1011 

Improved leaky 

integrate-and-

fire. 

1014 2, 3 2008 21 

Analog 

Models 

BrainScales 
European 

Union 
4x106 

Adaptive 

exponential 

integrate and 

fire neurons 

109 
 

1, 2, 3 

2011-

2015 
22 

HiAER-IFAT 

Univ. 

California at 

San Diego 

250.000 

Integrate-and-

fire with two 

compartments 

for neuron 

5x106 1, 2, 3, 4 2004 23-27 

NeuroDyn 
Univ. 

California at 
4 

Hogdking & 

Huxley. 384 
12 1 2004 23-27 
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San Diego parameters and 

24 channels. 

Hybrid 

Models 

Neurogrid 
Stanford 

University 
106 

Quadratic 

integrate-and-

fire somatic 

compartment + 

Dendritic 

compartment 

model with 4 

Hogdking & 

Huxley 

channels 

109 1, 3, 4 2007 28 

BRAIN 

Initiative 
Qualcomm not public not public not public 1, 2, 3 2013 29 

Table 1. Overview of key features of relevant projects. Objectives (1. Computational Neuroscience; 2. Artificial 

Intelligence; 3. Neuromorphic chips; 4. Build devices to help disable people). 

 

 3. Characteristics of the models 

 

Table 1 shows an overview of key features of 

main projects around the world that model the 

brain. In this table they are grouped according to 

the classification referred to: 

Project name: it usually contains words like 

‘neuron’, ‘spike’ or ‘brain’. 

Institution: it is observed that most 

institutions are universities, but there are some 

projects developed in companies, such as IBM 

(SyNAPSE) or QUALCOMM (BRAIN 

Initiative). Most modeling works are coordinated 

by groups of the prestigious American 

universities, like Stanford (Neurogrid). There are 

also projects coordinated in prestigious European 

universities like University of Lausanne (HBP) 

or University of Manchester (SpiNNaker). The 

projects developed in European universities are 

mainly supported through the European Union, 

while in the case of US projects, funding comes 

from DARPA and NIH (National Institutes of 

Health). The most important difference between 

European and American projects is that 

Europeans try to increase scientific knowledge 

about the brain. However, the major American 

projects are rather focused on carrying out a 

revolution in the computer industry, laying the 

foundation for future computer systems. 

Number of neurons: the simulation with the 

largest number of neurons was made by the 

SyNAPSE project in 2012 with 5.4x1011 

neurons, a quantity even higher than a human 

brain, which is around 8.6x1010 [13]. It should be 

noted that this simulation is not expected to be 

realistic and uses very simplified neuronal 

models. Furthermore, the simulation runs 1542 

times slower than real time and 1.5 million 

BlueGene/Q cores [30] were necessary. 

Types of Neurons: there are many types of 

neuronal models with different levels of realism 

and complexity. These implementations can be 

either software or hardware-based. When it 

comes to software connectionist models, 

artificial neurons are simple processing elements 

which operate following sigmoid or threshold 

mathematical functions [31], although there are 

progressively more software models using built-
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in spiking neurons [32] that simulate action 

potentials. In the case of realistic models, the 

latter usually present ion channels responsible for 

the spike generation. The Hodgkin-Huxley 

model [9] requires more computational resources 

because it simulates Ca+2, K+ and Na+ currents. 

It is used in the HBP [18], Neurogrid [28] and 

NeuroDyn [26]. When the 3D arrangement of 

axons and dendrites is considered, the simulation 

becomes significantly more complicated, as a 

space-time integration is necessary. For the sake 

of simplicity, Rall’s Cable Theory [33] and 

compartment models [34] are used. For more 

information about these models, please refer to 

[35]. The simplest model is “Integrate-and-fire 

point neuron”, which adds the inputs to the 

associated weights and compares the sum to a 

threshold, resulting in a binary decision of either 

generating a spike output or not. There is an 

extension of this model that uses a charge decay, 

known as “leaky integrate and fire”. It is used for 

example in SPAUN [19], SpiNNaker [20] and 

SyNAPSE [21]. Other ways to improve the 

models are: non-linear sum, time-dependent 

threshold, programmable delay in the release of 

the spikes and other variations. 

Simulated synapses: in 2012 the SyNAPSE 

project achieves 1.37x1014 simulated synapses 

[12], roughly the same number as in the human 

brain. A problem encountered by the models is 

the synaptic connectivity because of the large 

number of existing connections in the brain. In 

addition, the connections between neurons are 

formed during development, but they change 

daily to allow learning. To date, the most 

common solution involves using networks with 

AER architecture [36, 37] that make neurons 

communicate only when they need to send a 

spike. The information is sent in a package that 

contains only the address of the neuron that fires 

the spike. The synaptic connectivity is stored in 

tables that are used by the network routers [38]. 

In analog models, the nearby connections 

between neurons are usually done through a 

direct cable. However, for long-distance 

connections AER is necessary, for which 

Analog/Digital and Digital/Analog converters are 

employed. This is a problem because the circuit 

that the neuron needs for conversion and routing 

is much larger than the neuron circuit itself. The 

brain modeling projects use supercomputer and 

CPU [39] or GPU clusters [40]. Moreover, others 

use neuromorphic chips specifically designed to 

process information emulating the brain, both 

digital (SpiNNaker [20], TrueNorth [21]) and 

analog (HICANN [22]), and even hybrid 

(Neurogrid [28], Zeroth [41]). One of the 

advantages of the neuromorphic systems is that, 

as they are implemented within the hardware, 

they eliminate the overhead of the simulation 

software, providing a more accurate output in a 

shorter space of time. Furthermore, the emulation 

speed and communication in neuromorphic 

solutions can be run faster than the biological 

equivalent. Another advantage of the 

neuromorphic solutions is that they have a lower 

consumption per emulated neuron. Although the 

analog model is faster, it has not been shown that 

its fixed neural structure adequately captures 

biological neural behavior. 

Project duration: these are very complex 

modeling projects and works and, therefore, their 

time span is long. The case of Blue Brain Project 

should be pointed out, which began in 2005 and 

later became part of the Human Brain Project 

which is still underway. The older projects 

(started 10 or more years ago) include: 

Spinnaker, HiAER-IFAT or NeuroDyn. As seen 

in Table 1, the most recent is SPAUN. All of 

them are still under development, except for 

FACETS and BrainScales. 
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Objectives: most brain models are not 

completed, although some projects have already 

built parts of them that have been applied to 

certain fields or specific studies. On the one 

hand, the projects which are mainly focused on 

understanding some aspects of the brain were 

divided as follows: HBP is trying to simulate the 

effect of new drugs for brain diseases; SPAUN is 

testing neuroscientific hypotheses related to 

behavior studies; and the Neurogrid project is 

aimed at figuring out how cognition arises. On 

the other hand, there are models which allow 

automatic processing of large amounts of data 

using intelligent software (SyNAPSE, 

SpiNNaker). There are also projects that develop 

new processing hardware architectures, such as 

BrainScales, SpiNNaker, SyNAPSE. Finally, 

there are also some which allow even building 

devices to help disabled people, as in the case of 

the SpiNNaker project. 

References: fundamental webs or papers, 

where the projects were presented. 

 

4. Brain Computational Models with Glia 

 

So far there were no projects including 

astrocytes in a neuromorphic chip. There are 

only realistic computational models [42-49] and 

connectionist ones [50-54] which have taken 

glial cells into account. Currently, there are two 

projects aimed at implementing astrocytes in 

neuromorphic chips, one is BioRC [55-57] 

developed by the University of Southern 

California and the other project is carried out by 

the University of Tehran and University of 

Kermanshah (Iran) [58-60]. Moreover, there is a 

project under development at the University of A 

Coruña, which extends classical ANN by 

incorporating recent findings and suppositions 

regarding the way information is processed via 

neural and astrocytic networks in the most 

evolved living organisms. Considering the works 

published over the past two decades on the 

multiple modes of interaction between neurons 

and glial cells [14-17], it would be a very 

interesting approach if most of these groups tried 

to implement these behaviors in computer 

models. In addition, it is worth noting that glial 

cells have evolved more than neurons. For 

example, in mammals there are no major 

differences between neurons of different species. 

However, a rodent’s astrocytes may include 

between 20,000 and 120,000 synapses, while a 

human’s may include up to 2 million synapses 

[61, 62]. Furthermore, the ratio between neurons 

and glial cells varies in different brain regions. In 

the cerebellum, for instance, there are almost 5 

times more neurons than astrocytes. However, in 

the cortex, there are 4 times more glial cells than 

neurons [13]. All these data suggest that the more 

complex the task, performed by either an animal 

or a brain region, the greater number of glial 

cells is involved. 

 

4. Conclusions 

There are a great variety of projects and 

models of the brain around the world. The 

development of digital, analog and hybrid 

models is expedient and allows for advances in 

Neuroscience and Computer Science.  

With regard to the cerebral phenomena 

emulated by computer models, the importance of 

considering the glial system should be stressed. 

Such system is crucial for the development of 

complex cognitive capacities of human beings. 

Therefore, it should be part of brain models to be 

truly realistic. 

 In the short and medium term, the 

modeling of the brain and neuromorphic chips 

will advance the development of prosthetic 

devices and Brain-Machine Interface. However, 

all the brain simulations that will be performed 
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within this period will use very simplified 

models. It is therefore questionable that the 

whole brain could be analyzed through realistic 

simulations.  

 In the long term, it is more difficult to 

make predictions about the brain simulations, as 

their approach is rather philosophical than 

scientific. The question of creating an artificial 

brain is old, but today there is a clear division 

between scientists who believe it is possible, and 

could even be accomplished within the next two 

decades, and those who believe it will never be 

possible. 
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