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Abstract: The pharmacokinetic properties of absorption, distribution, metabolism and excretion 

(ADME) play a crucial role in drug discovery and development, since many drug candidates fail due to 

an inappropriate pharmacokinetic profile. Cytochrome P450 enzymes are predominantly involved in 

Phase 1 metabolism of xenobiotics. Thus, it is important to better understand and prognosticate 

substrate binding and inhibition of CYP450. The goal of this study was to obtain QSAR (Quantitative 

Structure-Activity Relationship) models to identify substrates and inhibitors of CYP3A4. The data sets 

were collected and curated from online available databases and literature. Several QSAR models were 

obtained and validated according to the recommendations of the Organization for Economic Co-

operation Development (OECD). The combination of different descriptors and machine learning 

methods led to robust and predictive QSAR models with high coverage. The interpretation of 

developed models was performed using the predicted probability maps (PPMs). These maps help to 

encode major structural fragments to classify compounds as inhibitors or not inhibitors of CYP3A4. In 

conclusion, the obtained models can reliably identify substrates and non-substrates, and inhibitors and 

non-inhibitors of CYP3A4, which is very important in the early stages of the development of new 

drugs.  
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1. Introduction 

Many drug candidates fail during the drug 

development process in clinical trials due to an 

inappropriate pharmacokinetic profile. For this 

reason, the study of the pharmacokinetic 

properties absorption, distribution, metabolism, 

excretion, and toxicity (ADME/Tox) of a drug 

candidate is important to reduce time and 
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increase the chances of success during drug 

discovery and development¹. 

ADME/Tox properties are the major contributors 

to the failures of new drugs in the development 

pipeline and often the underlying biological 

mechanism of toxicity is related to metabolism. 

Metabolic liability can lead to a number of 

diverse issues, including drug−drug interactions, 

in particular enzyme inhibition and induction, 

which in turn may cause therapeutic failure 

toxicity, and adverse effects2. 

Cytochrome P450 (CYP) enzymes are 

predominantly involved in Phase 1 metabolism 

of xenobiotics. CYP3A4 is the most abundant 

cytochrome isoenzyme present in liver and is 

responsible for the metabolism of more than 50% 

of the marketed drugs3. The main goal of this 

study was to develop robust and predictive 

models that can be used to classify compound as 

inhibitor/non-inhibitor or substrate/non-substrate 

of CYP3A4 for identifying and discarding drug 

candidates with potential metabolism issues. 

 

2. Results and Discussion 

The statistical results of QSAR models generated 

for substrates of CYP3A4 (dataset I), using the 

test set compounds, are summarized in Figure 1. 

 

 

Figure 1. Statistical results of predictions of 

QSAR models for CYP3A4 substrates evaluated 

by 5-fold external cross-validation. 

 

The combination of different descriptors and 

machine learning (ML) methods led to robust 

and predictive QSAR models for substrates of 

CYP3A4, with correct classification rate (CCR) 

values ranging between 0.65-0.83 and coverage 

of 0.69-0.89. However, among the best three 

selected models (Atom Pair-SVM; PubChem-

SVM; Atom Pair-GBM), the model generated by 

combining Atom Pair-GBM without considering 

DA showed a higher sensitivity and lower 

difference between the values of sensitivity and 

specificity obtained the best ability to classify 

correctly both substrates as non-substrates of 

CYP3A4. 

The statistical results of binary and multiclass 

QSAR models for CYP3A4 inhibitors (data set 

II) are illustrated on Figure 2. 

 

Figure 2. Statistical results of predictions for the 

best binary and multiclass QSAR models for 

CYP3A4 inhibitors evaluated by 5-fold external 

cross-validation. 

 

The two best binary and multiclass models were 

generated using a combination of Morgan-SVM 

and Morgan-RF. These binary models showed 

equal values of accuracy 0.76, which 

corresponds to the percentage of molecules that 

are correctly classified by model. Furthermore, 

they showed sensitivity values of 0.74 and 0.77, 

respectively. The accuracy of these models was 

0.77 and 0.78, respectively, whereas F1 was 0.76 

and for both models. The multiclass models were 

also generated using the combination of Morgan-

SVM and Morgan-RF. The Morgan-RF model 

presented precision value 0.69, while the 

Morgan-SVM was 0.66. The Morgan-RF model 

was also slightly higher in relation to F1 value, 
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with value of 0.69, compared to the value of 0.66 

for the Morgan-SVM. However, multiclass and 

binary QSAR models showed similar statistical 

results. Therefore, both models were considered 

the best models to evaluate the inhibition of 

CYP3A4. In addition, predicted probability maps 

(PPMs) were generated by Morgan-RF models. 

The maps for drugs ketoconazole, tioconazole 

and miconazole are presented in Figure 3. 

 

 

Figure 3. PPMs for selected antifungal drugs 

generated using Morgan-RF models. Green 

atoms/fragments have favorable contribution in 

the property (CYP3A4 inhibition); Gray: no 

contribution; Pink atoms/fragments have 

unfavorable contribution in the property 

(CYP3A4 non-inhibition). The bit vector size of 

Morgan was 1024 bits. 

 

 

Miconazole, ketoconazole and tioconazole are 

antifungal drugs and CYP3A4 inhibitors. These 

three drugs were classified by the binary model 

as CYP3A4 inhibitors, and multiclass model 

considered the three drugs as strong inhibitors 

with high probability. The imidazole fragment in 

their structures outlined in green indicate that this 

fragment has favorable characteristics for the 

investigated property. These fragments have 

atoms which are capable of coordinating with 

heme group iron. The phenyl and thiophene rings 

are outlined in gray color, which features neutral 

contribution to the property. Gray isolines 

demarcate the separation of regions that have 

favorable and unfavorable contribution. 

 

3. Materials and Methods 

In this study, two large datasets were collected 

for profiling the CYP3A4 activity. The dataset I 

contained 8,214 compounds, in which 475 are 

substrates of CYP3A4 and 7,739 are non-

substrates (inactive). The annotated dataset was 

gathered from the literature4 and PubChem 

bioassay (Assay ID: 1851). The dataset II 

contained 9,186 compounds, in which 4,962 are 

inhibitors de CYP3A4 and 4,224 are non-

inhibitors. The annotated dataset was gathered 

from ChEMBL340 assay. All the molecular 

modeling studies were performed using a 

workflow in KNIME platform developed in our 

laboratory. The dataset curation (removal of 

duplicates, structural conversion, normalization 

of specific chemotypes etc.) was performed using 

Indigo Open Source Standardizer following the 

workflow described by Fourches et al.5 including 

the duplicate analysis. Binary and multiclass 

QSAR models were developed and validated 

according to the OECD principles. For 

generation of QSAR models we used the qsaR 

package fully integrated workflow KNIME 2.96. 

The cross-validation procedure 5-fold was used 

to estimate the robustness of the model using the 

training set, while the test set was used to 

validate and estimate the predictive power of the 

generated models. 

Because dataset I was highly unbalanced, it was 

not recommended to build binary QSAR models 

for the entire dataset. Therefore, a linear under-

sampling strategy was used to investigate the 

more adequate dataset balancing. We generated 

five under-sampled datasets with substrates-to-

non-substrates ratios of 1:1, 1:2, 1:3, 1:4, 1:8, 

and the unbalanced dataset. From the six 

different datasets splits generated, the balancing 

with proportion of 1:1 and the total unbalanced 
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dataset were selected because of the best 

statistical results and covering the largest 

chemical space. Thus, various QSAR models 

were generated using different types of 

descriptors and algorithms, in order to use more 

information from QSAR models. Four different 

types of molecular fingerprints were utilized in 

this study (Atom Pair7, PubChem8, MACCS9 and 

FeatMorgan10), as well as four ML algorithms 

(SVM11, GBM12, PLSDA13 and kNN14) were 

used to model generation, totaling in 16 different 

QSAR models.  

For dataset II, the models for CYP3A4 inhibitors 

were generated using a 5-fold technique, i.e., 

spliting the data set in modeling set and external 

validation set. We used only one type of 

molecular descriptor (Morgan) and two ML 

methods (SVM and RF15). For construction of 

multiclass models, the threshold activity was 

defined as follows: strong inhibitor ≤ 1 µM; 

weak-moderate inhibitor, property between 1 µM 

and 10 µM; non-inhibitor ≥ 10 µM16. 

PPMs17 were generated for visualization of 

favorable (positive) and unfavorable (negative) 

structural fragments for compound to be inhibitor 

or non-inhibitor of CYP3A4.  

 

4. Conclusions 

The largest publicly available data sets for 

substrates and inhibitors of CYP3A4 were 

collected, prepared and balanced. Robust and 

predictive QSAR models were generated for the 

identification of substrates (binary models) and 

inhibitors (binary and multiclass models). 

Obtained models can be used for identifying 

substrates and inhibitors of CYP3A4 in early 

stages of drug development. PPMs showed 

important contribution of some fragments 

probably responsible for interaction with the 

heme group of CYP3A4. 
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