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Abstract:  

 

One popular method for the representation and characterization of chemical structure is through 

the use of their computed mathematical descriptors.  Such descriptors, often called molecular 

descriptors, quantify different aspects of molecular structure, viz., size, shape, branching, cyclicity, 

bonding patterns, etc.   Applications of discrete mathematics in the development of molecular 

descriptors began in the middle of the twentieth century and the trend is going on in an unabated 

manner even today.  While in the 1970s only a few descriptors could be calculated, currently 

available software can calculate a large number of descriptors for molecules or biomolecules like 

DNA/ RNA, proteins.  When p molecular descriptors are calculated for n molecules, the data set 

can be viewed as n vectors in p dimensions, each chemical being represented as a point in Rp.   

Because many of the descriptors are strongly correlated, the n points in Rp will lie on a subspace 

of dimension lower than p.  Methods like principal components analysis (PCA) can be used to 

characterize the intrinsic dimensionality of chemical spaces.  Since the early 1980s, Basak et al 

have carried out PCA of various congeneric and diverse data sets relevant to new drug discovery 

and predictive toxicology.  Principal components (PCs) derived from mathematical 

chemodescriptors have been used in the formulation of quantitative structure-activity relationships 

(QSARs), clustering of large combinatorial libraries as well as quantitative molecular similarity 

analysis (QMSA).  This presentation will review the results of PCA carried out by Basak and 

coworkers since the early 1980s to the present time in the characterization and visualization of 
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chemical spaces with special reference to five data sets, both congeneric and structurally diverse: 

1) A large and structurally diverse set of 3,692 chemicals which was a subset of the Toxic 

Substances Control Act  (TSCA)  Inventory maintained by   the United States Environmental 

Protection Agency (USEPA), 2) A set of 74 alkanes, 3) A virtual library of 248,832 psoralen 

derivatives, 4) A congeneric set of 95 aromatic and heteroaromatic amine mutagens, and 5) A 

structurally diverse collection of 508 chemicals mutagens. 

 

 

Keywords: Computed mathematical descriptors; Principal components analysis (PCA); 

Congeneric  set; Diverse set; Psoralen derivatives; alkanes, Subset of the Toxic Substances Control 

Act (TSCA) Inventory; Structurally diverse mutagens; Congeneric set of aromatic and 

heteroaromatic amine mutagens; Intrinsic dimensionality of chemical space;  Quantitative 

structure-activity relationship (QSAR); Clustering of combinatorial libraries; Quantitative 

molecular similarity analysis (QMSA).   
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1. Introduction 

Mathematical chemistry, or more correctly 

discrete mathematical chemistry, had its 

beginning at the middle of the twentieth century 

probably with the publication of the seminal paper 

by Harry Wiener [1] on the calculation of 

.structural indices for the prediction of molecular 

properties.  Although representation of chemical 

species by graphs was explored by Sylvester [2] 

as early as 1878, the characterization of molecular 

structure by graph invariants has made great 

strides during the past half century or so [3-16] 

following the seminal work of Wiener [1].  

Invariants of graphs associated with molecules 

and biomolecules quantify certain aspects of their 

structure and have been used in the 

characterization and comparison of such 

structures as well as prediction of their properties 

[4, 17, 18, 19].  Specifically, such invariants and 

orthogonal factors like principal components PCs) 

derived from them have found applications in 

quantitative structure-activity relationship 

(QSAR) studies [3-15, 20], quantitative molecular 

similarity analysis (QMSA) research [21-24], 

clustering of large libraries of structures into 

smaller subsets [23, 24], and in the discrimination 

of pathological structures like isospectral graphs 

[17].  One of the authors of this paper (Basak) has 

been involved since the early 1970s in the 

development of novel numerical graph invariants 

or topological indices (TIs) [6, 7, 11, 25-27] as 

well as biodescriptors derived from DNA/ RNA 

sequences [28] and proteomics maps [29].  

Basak’s research [20] carried out with colleagues 

at the University of Calcutta, India, in the 1970s 

involved mainly formulation of QSARs of 

congeneric sets of chemicals using their own 

information theore5tic indices and topological 

indices developed by Bonchev & Trinajstić [4, 5], 

Randic [9-12] & Kier and Hall [3] as well as 

physical properties like van der Waals’ volume, 

calculated or experimental hydrophobicity (log P, 

octanol water) [20].  In the early 1980s, after 

Basak joined the University of Minnesota Duluth, 

the software POLLY [30] was developed and 

large scale calculation of TIs for QSAR and 

QMSA analyses was initiated.  In one of the 
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earliest studies of its kind, Basak et al [31] used 

POLLY for the calculation of ninety TIs for a 

collection of 3,692 structurally diverse chemicals 

which was a subset of the Toxic Substances 

Control Act    (TSCA) Inventory of the United 

States Environmental Protection Agency 

(USEPA).  The authors carried out principal 

components analysis (PCA) on this data set and 

asked the question: What is the intrinsic 

dimensionality of chemical structure measured by 

the large number of TIs?  This line of research, 

i.e., PCA and use of principal components (PCs) 

derived from different collection of TIs calculated 

by POLLY [30], MolConnZ [32], Triplet [33, 34], 

and APProbe [35] in QSAR and QMSA, has 

continued to this day.  This paper summarizes the 

results and the lessons learned from a few of these 

studies using both congeneric and structurally 

diverse sets of chemicals, viz., 1) A large and 

structurally diverse set of 3,692 chemicals 

mentioned above, and 2) A data set of 74 alkanes, 

3) A virtual library of 248,832 psoralen 

derivatives, 4) A congeneric set of 95 aromatic 

and heteroaromatic amine mutagens, and 5) A 

structurally diverse collection of 508 chemicals 

mutagens. 

.

 

2 Results and Discussion 

 

2.1 A large and structurally diverse set of 

3,692 chemicals. 

For this data set, 90 TIs were calculated by the 

POLLY [30] software and PCA was performed. 

For details of the list of the particular TIs 

calculated for this study see Basak et al [21, 31]. 

Results showed that first ten PCs with eigenvalues 

greater than or equal to 1 explained 92.6% of the 

variance in the data and PC1-PC4 explained 78.3% 

of the variation in the original variables.  

Regarding the correlation profiles of the original 

variables or TIs with the first four important PCs, 

Table 1 below gives the data: 

 

 

 

 

 

 

 

 

 

Table 1: Correlation of the first four PCs with 

the original variables including topological 

indices. 

 

PC1 PC2 PC3 PC4 

K1 (.96) SIC3 

(0.97) 

4χb
C (.69) 4χCH (.85) 

2χ  ( .95) CIC4 (-

.96) 

4χb
C (.69) 4χb

CH 

(.84) 
3χ  ( .95) CIC3 (-

.95) 

5χb
C (.68) 4χv

CH 

(.80) 

K2 (.95) SIC4 

(.95) 

4χC (.68) 3χCH (.75) 

K0 (.95) SIC2 (.94) 3χv
C (.67 ) 

 

3χb
CH 

(.75) 
1χ  (.94) CIC5 (-

.94) 

5χC (.64) 4χb
CH 

(.74) 
3χb (.94) CIC6 (-

.92) 

6χC (.64) 3χv
CH 

(.72) 
4χ  (.94) SIC5 

(.92) 

3χC (.61) 5χCH (.71) 

4χb (.93) SIC6 

(.89) 

6χb
C (.60) 5χv

CH 

(.67) 
0χ (.93) CIC2 (-

.87) 

5χv
C (.60) 6χb

CH 

(.47) 
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It is clear from the data in Table 1 that PC1 is 

strongly correlated with those indices which are 

related to size of chemicals.  It is noteworthy that 

for the set of 3,692 chemicals PC1 was also highly 

correlated (r = 0.81) with molecular weight.  PC2 

may be interpreted as an axis of molecular 

complexity as encoded by the higher order 

information theoretic indices [27].  PC3 is most 

highly related to the cluster/ path-cluster type 

molecular connectivity indices which quantify 

information regarding molecular branching.  The 

data in Table 1 clearly show that PC4 is strongly 

correlated with the cyclicity terms of the 

connectivity type. 

 

2.2 A data set of 74 alkanes 

For boiling point estimation lf alkanes, twenty 

six TIs, total surface area (TSA), and volume (V) 

were calculated for a set of 74 alkanes [36].    

Table 2 below gives the three different two-

parameter regression models for the prediction of 

boiling point. 

 

Table 2: Results of three 2-parameter models 

in predicting the boiling points of 74 alkanes 

 

Parameter R2 s. e. F 
1χ, CIC2 99.4 3.72 5620 

PC1, PC3 98.1 6.48 1828 

V, TSA 97.0 8.17 1136 

 

It appears from the data in Table 2 that the 

individual TIs, PCs derived from them as well as 

the calculated physical properties like volume and 

total surface area give good QSARs for this 

congeneric set of molecules.  The TIs and PCs 

derived from them give a little bit superior models 

as compared to the properties.  

 

2.3 A virtual library of 248,832 psoralen 

derivatives 

A virtual library of 248,832 psoralen 

derivatives [23] was created and analyzed using 

PCs derived from TIs.  For this study, a set of 92 

topological indices was calculated by POLLY 

[30].  The set of TIs consisted of 37 topostructural 

and 55 topochemical indices.  We define 

topostructural indices as those invariants which 

are derived from simple (unweighted) molecular 

graphs.  Such graphs do not distinguish among 

different types of bonds or atoms.  The Wiener 

index; cluster, path-cluster, and simple 

connectivity indices; and path length indices are 

examples of topostructural parameters.  

Topochemical indices, on the contrary, are indices 

defined on weighted molecular graphs such that 

the various types of atoms and bonds are weighted 

to reflect their nature and contribution to chemical 

bonding.  The SIC, CIC, and IC indices as well as 

both bonding and valence connectivity indices are 

all examples of topochemical indices.  For this 

data set, the top 3 PCs explained 89.2% of the 

variance in the data; first 6 PCs explained 95.5% 

of the variance of the original calculated indices.  

The PCs were used to cluster the large set of 

chemicals into a smaller subset as an exercise of 

managing combinatorial explosion that can 

happen in the drug design scenarios when one 

wants to create a large pool of derivatives of a lead 

compound.  For details of the outcome of 

clustering of the 248,832 psoralen derivatives, 

please see [23]. 

 

For the large but congeneric set of 248,832 

psoralen derivatives, first 6 PCs explained 95.5% 

of the variance of the original calculated indices.  

 

2.4 A homogeneous set of aromatic amines 

 

<Data description> 
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Table 3: Top 10 variables behind each of first 

4 PCs (loadings in brackets) for 95 compound 

dataset 

 

PC1 PC2 PC3 PC4 

Hf 

(-0.20) 

Hf 

(0.75) 

EHOMO 

(-0.52) 

fw 

(-0.76) 

DN214 

(-0.14) 

9 

(0.23) 

Hf 

(-0.50) 

ELUMO 

(0.38) 

IW
D 

(-0.13) 

10 

(0.23) 

ELUMO 

(-0.36) 

SaaN 

(-0.32) 

Wt 

(-0.13) 

ELUMO 

(0.21) 

10 

(0.19) 

EHOMO-1 

(-0.27) 

EDH 

(-0.13) 

8 

(0.20) 

9 

(0.16) 

SdO 

(0.24) 

DS14 

(-0.13) 

EHOMO 

(0.18) 

fw 

(0.15) 

nvx 

(0.23) 

AS14 

(-0.12) 

SaaaC 

(0.12) 

8 

(0.14) 

phia 

(-0.19) 

DN2Z4 

(-0.12) 

7 

(0.11) 

SaaN 

(-0.13) 

 

(0.14) 

AZS2 

(-0.12) 

SHBint3 

(-0.09) 

7 

(0.12) 

Hf 

(0.14) 

ED 

(-0.12) 

XP8 

(0.07) 

 

(-0.12) 

9 

(-0.14) 

 

For the 95 aromatic amine set, PC1 is correlated 

with different original variables including some 

triplet indices and some indices related to 

molecular size. PC2 is most strongly correlated 

with the heat of formation, ∆Hf (r = 0.75);   the 

energy of the highest occupied molecular orbital, 

EHOMO (r = -0.52) and ∆Hf (r = -0.50) are most 

highly corr4elated with PC3 whereas PC4 is 

strongly correlated with fw (r = -0.76) which is 

the molecular weight of the chemical species. 

 

2.5 A diverse set of 508 chemicals 

 

<Data description> 

 

 

Table 4: Top 10 variables behind each of first 

4 PCs (loadings in brackets) for 508 compound 

diverse dataset 

 

PC1 PC2 PC3 PC4 

DN214 

(-9.89×10-2) 

Hf 

(-0.77) 

Hf 

(-0.62) 

EHOMO 

(0.96) 

IW
D 

(-9.51×10-2) 

10 (-

0.17) 

8 

(0.18) 

EHOMO-1 

(-0.21) 

Wt 

(-9.47×10-2) 

9 

(-0.17) 

9 

(0.18) 

ELUMO 

(-0.09) 

EDH 

(-9.38×10-2) 

8 

(-0.16) 

10 

(0.17) 

ELUMO+1 

(-0.07) 

AS14 

(-8.94×10-2) 

7 

(-0.15) 

7 

(0.17) 

Hf 

(-0.04) 

IdC 

(-8.59×10-2) 

6 

(-0.12) 

6 

(0.14) 

 

(0.03) 

ED 

(-8.52×10-2) 

ELUMO+1 

(0.12) 

ELUMO 

(-0.13) 

5 

(-0.03) 

fw 

(-8.52×10-2) 

ELUMO 

(0.12) 

5 

(0.13) 

DSZ2 

(0.03) 

W 

(-8.43×10-2) 

5 

(-0.11) 

6PC 

(0.12) 

6 

(-0.03) 

AN14 

(-8.37×10-2) 

6PC 

(-0.09) 

ELUMO+1 

(-0.12) 

4 

(-0.03) 

 

For the diverse 508 chemical mutagen set, the 

energy of the highest occupied molecular orbital, 

EHOMO (r = .96) is most strongly correlated with 

PC4; PC3 is highly correlated with ∆Hf (r = -.62) 

which is also negatively correlated with PC2 (r = -

.77); PC1 is loaded with some triplet indices and 

those invariants which reflect molecular size. 
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3. Materials and Methods 

For materials and methods of data collection and 

statistical analyses, see [19-21, 23, 27, 30-35]. 

 

 

 

4. Conclusions 

In this paper, we reviewed our over three decades of research on the use of topological indices and 

principal components analysis in the characterization of five data sets: 1) A large and structurally diverse 

set of 3,692 industrial chemicals which was a subset of the Toxic Substances Control Act (TSCA)  

Inventory of the United States Environmental Protection Agency (USEPA), 2) A data set of 74 alkanes, 

3) A virtual library of 248,832 psoralen derivatives, 4) A congeneric set of 95 aromatic and 

heteroaromatic amine mutagens, and 5) A structurally diverse collection of 508 chemicals mutagens. 

 

The results show that the PCs derived from the TIs can be used for the development of QSARs as 

exemplified in Table 2 with 74 alkanes.   PCs derived from TI have been used in the clustering of large 

set of psoralens [23].  Basak et al also used both PCs and individual TIs for analog selection [24] and 

characterization of isospectral graphs [17].  The data presented here show the usefulness of TIs and PCs 

derived from them in the clustering/ characterization of chemical libraries as well as QSAR.  Details of 

QMSA analyses using PCs derived from TIs are not given here for brevity. 

 

Basak [37] recently noted: “Mathematical chemistry or more accurately discrete mathematical chemistry 

had a tremendous growth spurt in the second half of the twentieth century and the same trend is 

continuing now.  This growth was fueled primarily by two major factors: 1) Novel applications of 

discrete mathematical concepts to chemical and biological systems, and 2) Availability of high speed 

computers and associated software whereby hypothesis driven as well as discovery oriented research on 

large data sets could be carried out in a timely manner.  This led to the development of  not only a 

plethora of new concepts, but also to various useful applications to such important areas as drug 

discovery, protection of human as well as ecological health,  and chemoinformatics.  Following the 

completion of the Human Genome Project in 2003, discrete mathematical methods were applied to the 

“omics” data to develop descriptors relevant to bioinformatics, toxicoinformatics, and computational 

biology.” 

 

Initially, TIs were used for the discrimination of structure and QSAR studies of congeneric and small 

sets of structures.  For example, Randic’s [9] first order connectivity index (1χ), the information theoretic 

indices developed by Bonchev and Trinajstić [38] and those developed by Raychaudhury et al [7] were 

used to discriminate the set of alkanes and they worked well in those cases.  In the case of 18 octanes, 

the molecules do not vary from each other with respect to size, but primarily in terms of branching 

patterns.  Therefore, the indices [7, 9, 38] were interpreted based on the data as reflecting molecular 

branching.  But when PCA was carried out with a diverse set of 3,692 chemical structures, the results 

entered an uncharted territory and were counterintuitive, to say the least.    As shown from the correlation 

of the original variables with PC1, 1χ and related indices were now strongly correlated with molecular 

size in the large and diverse set, not to molecular branching.  PC3 emerged as the axis representing 
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branching and was strongly correlated to the cluster type molecular connectivity indices.  Further studies 

with both congeneric and diverse data sets are need to understand the utility of TIs and PCs derived from 

them in structure-activity analyses. 
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