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Property/ Activity/ Toxicity = f (S)



What is structure ?

• The structure of an assembled entity, e. g., a 

molecule can be looked upon as the 

relationship among its constituent parts

• A graph, G= [V, E] is an adequate 

representation of molecules where V is the 

set of atoms and E is the set of bonds or 

edges



Reality

Model Object

Mathematical Model

Method, Model and Matter, by Bunge



Representation of Molecular Structures

by Graphs



Let V = (1, 2, 3, 4, 5)

V x V = {(1,1), (1,2), (1,3), (1,4), (1,5) …}

R1 = {(1,5), (5,1), (2,5), (5,2), (3,5), (5,3), (4,5), (5,4)}

A binary relation on the set V
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Structure is a complex idea



Hierarchical Approach to Chemical Structure Representation

3-methylcyclohexanone
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Characterization of Molecular Graphs

Using TIs



Molecular graphs can be characterized using 

numerical graph invariants or topological indices (TIs)

• Simple graph

• Multigraph

• Weighted graphs

Molecular Graph Molecular 

descriptor



Wiener Index, W
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Calculation of IC, SIC & CIC

H1 O1 C1 C2 C3 H8

H2 H4 H6

H3 H7H5

Labeled graph:

First Order Neighborhoods:
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Subsets: I II III IV V VI

(H1) (H2-H8) (O1) (C1) (C2) (C3)

Probability:

(pi)
1/12 7/12 1/12 1/12 1/12 1/12

(Basak, Roy,  Magnuson,  and Harriss)



• Can partition the vertex set, V(G), into disjoint 

subsets based on topological neighborhoods of 

vertices up to the rth order neighbors and provide 

indices of neighborhood complexity

• Is reflexive, symmetric, and transitive

Equivalence Relation 



Information Content (IC1)
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QSAR and 

Molecular 

Descriptors



Strategies

• Laboratory experiments

• Property-property correlations [P1 = f (P2)
a]

• Structure-property correlations [P = f (S)b]

– QSAR / QSPR

– Molecular Similarity

a Experimentally determined
b Calculated
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Data Reduction via Principal Components Analysis

3,692 chemicals; 90 diverse TIs

(Basak, Magnusson, Niemi, Regal, and Veith, 1987)

• 10 PCs with Eigenvalues greater than 1

• First 10 PCs explain 92% of the variance within the data

• First 4 PCs account for 78% of the variance within the data

Principal 

Component (PC) 

 

Eigenvalue 

Percent of 

variance 

Cumulative 

percent 

1 39.6 44.0 44.0 

2 14.6 16.2 60.2 

3 9.9 11.0 71.2 

4 6.4 7.1 78.3 

5 3.3 3.7 82.0 

6 3.2 3.5 85.5 
7 1.9 2.1 87.6 

8 1.8 1.9 89.5 

9 1.5 1.7 91.2 

10 1.2 1.3 92.5 

 



PC1 Size

PC2 Symmetry

PC3 Branching

PC4 Cyclicity

S.C. Basak, V.R. Magnuson, G.J. Niemi, R.R. Regal 

Discrete Applied Mathematics 19 (1988) 17-44



Topological Indices: Their Nature and

Mutual Relatedness

Subhash C. Basak, Alexandru T. Balaban,

Gregory D. Grunwald, and Brian D. Gute

Natural Resources Research Institute, University of

Minnesota--Duluth, Duluth, Minnesota 55811, and Organic

Chemistry Department, Polytechnic University Bucharest,

Splaiul Independentei 313, 77206 Bucharest, Romania

Journal of
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Information and

Computer Sciences®

Reprinted from

Volume 40, Number 4, Pages 891-898



Hierarchical QSAR



     Biodescriptors  
 

     Relativistic ab initio 
 

     Solvation state ab initio 
 

     In vaccuo ab initio 
 

    In vaccuo semi-empirical 
 

     Geometrical  / Chirality Parameters  
 

     Topochemical Indices  
 

       Topostructural Indices  

Hierarchical QSAR

Complexity Cost
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Graph Theoretic vs Quantum Chemical 

Descriptors for the Prediction of Vapor Pressure

• 121 chlorinated chemicals

• Supercooled liquid VP at 298K

• Graph theoretic descriptors:  q2 = 0.988

• Polarizability (DFT, B3LYP):  q2 = 0.974

Basak, S. C.; Mills, D. SAR QSAR Environ. Res., in press.



Improvement in Predictive Models Upon Inclusion of 

Quantum Chemical Descriptors?

Description of Data Set and Property/Activity Improvement 

  
Acute toxicity of benzene derivatives  Minimal 

  
Dermal penetration of PAHs  None 

  
Mutagenicity of aromatic and heteroaromatic amines None 

  
Mutagenicity of 508 diverse compounds None 

  
Vapor pressure of 469 diverse compounds None 

  
Cellular toxicity of halocarbons Minimal 

  
Mosquito repellency of aminoamides None 

  
Mosquito repellency of DEET-related compounds None 

  
Blood and tissue:air partition coefficient for rat and human 

(blood, fat, brain, liver, muscle, and kidney) 

None 

  
Aryl hydrocarbon receptor binding affinity of dibenzofurans None 
 



Basak, S. C.; Mills, D.; Mumtaz, M. M.; Balasubramanian, K. 

Use of topological indices in predicting aryl hydrocarbon 

receptor binding potency of dibenzofurans: A hierarchical 

QSAR approach. Indian J. Chem., 2003, 42A, 1385-1391.
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Combinatorial Chemistry & QSAR

Structural

Hypothesis

Compound 

Library

Lead

Data

Candidate 

Chemicals

Virtual Library
Lead 

Optimization

Screening Synthesis

QSAR based 

screening



PC1 vs. PC2 for 4,453 chemicals based on the

correlation matrix of 98 variables
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Euclidean Distance

                     n
ED ij = [k=1 (Dik – Djk)

2
]

1/2

where n = the number of dimensions and Dik and Djk

equal the data values of the kth dimension for

chemicals i and j, respectively.



Probe



Intermolecular similarity of chemicals in each set was quantified using 

3 to 5 distinct similarity methods.

For each chemical, K-nearest neighbors were determined for K = 1, 2, 

…, 10, 15, 20, 25.

Estimated property values are determined as the mean observed value 

of the K-nearest neighbors.

K-Neighbor Selection and Property Estimation

KNN Estimation of 

Boiling Points for 1037

Diverse Chemicals

k r se

5 0.958 27.6

10 0.956 28.5

15 0.953 30.0

20 0.949 31.5

25 0.946 32.9

50 0.937 37.4



Structure Space

Chemical Space

Chemical

Clusters



HIV-I RT Inhibitor Discovered by Similarity Search
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JP-8
(~230 chemicals, ~2,000 chemicals)

• Skin toxicity

• Immunosuppression

• Systemic toxicity

230! or 2,000! mixtures to be tested



230! or 2,000! mixtures to be tested

230

Clustered using TIs

10 - 15 clusters

230! 15!



Quo Vadimus?



• Chemical structure

• DNA sequence, genomics

• Proteomics pattern

Matrix

Matrix invariants

(Structural invariants or descriptors)

Distance

Adjacency

D/D



Integrated QSAR (I-QSAR)

TS TC Geo QC

Chemoinformatics Bioinformatics

DNA Descriptors

Gene Expression

Proteomics

I-QSAR



Chemo-bioinformatics

Guest editorial

JCIM, 4 6, 1, 2006
Discrete mathematical chemistry has made 
important advances in the past twenty five 
years.  This has been fueled primarily by 
two factors: a) formulation of new concepts 
and b) easy access to high speed computers.  
Methods developed in this field have found 
applications in pharmaceutical drug design 
and hazard assessment of environmental 
pollutants. 



Chemo-bioinformatics

Guest editorial

JCIM, 4 6, 1, 2006
Interestingly, discrete mathematical concepts, 

originally developed for the characterization of 

chemical systems, are being extended to deal with 

explosion of data in the "omics" science, viz., 

genomics, proteomics, etc.  A few of the papers 

from the Fourth Indo-US Workshop published in 

this issue of JCIM are outstanding examples of 

this expanding chemo-bioinformatics continuum.



The enormous landscape

Even the same atoms of the same element, 
when they exist in different molecules, 
exhibit different behaviours. The chemical 
symbol H even seems to signify atoms of a 
completely different nature. In chemistry, 
this terrible individuality should never be 
avoided by “averaging,” and, moreover, 
innumerable combinations of such atoms 
form the subject of chemical research”

K. Fukui, Nobel Lecture, 1981



Isomorphic laws in Science
Not only are general aspects and 
viewpoints are alike in different fields 
of science; we find also formally 
identical or isomorphic laws in 
completely different fields

L. von Bertalanffy, British Journal for 
the philosophy of science, 1950






