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Abstract: The figure-ground division plays a fundamental role in all image perceptions. Although there are a lot of studies 
about extraction of a figure such as detection of edges or grouping of texture, a few discussions about a relationship 
between obtained figure and ground. We focused on double image illusions having two complementary relationships 
between figure and ground and analyzed them. We divided the double image illusions according to two different 
interpretations and using these divisions we extracted and analyzed its logical structures by lattices derived from rough sets 
that we had developed. As a result we discovered unusual logical structures in double image illusions. 
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1. Introduction 

 There are various double image illusions, 
Rubin’s vase1 being notorious. Double image 
illusions are said to be possible by the figure-
ground perception, established by Gestalt 
psychology2. Figure is the target of attention, 
and the ground is the background where the 
figure is contrasted. If the figure or ground 
status of an object changes, it is called a 
figure-ground reversal. 
   The contrast between figure and ground 
becomes especially important when 
interpreting images. Today, interpretation of 
visual images is becoming more important 
due to human-computer interface 3  and 
computer vision4. Psychological theories are 
developed for understanding human visual 
interpretation mechanisms5. 
   However these studies are entirely focused 
on extraction of the figure such as detection of 
edges or grouping of texture. The figure-
ground relationship obtained in them has 
almost never been discussed before. We 
focused on the ambiguity of complementary 
relationship between figure and ground in 
double image illusions and analyzed it. 
   First we consider the division of a figure 
image. A two-dimensional figure image is 
divided into groups by its attributes. In a figure 
image of a face, attributes are features of the 
figure image such as {eye, mouth, nose, ear, 
…}. When a two-dimensional figure image is 
divided into some parts, each of them is 
interpreted as an attribute. We call a mapping 
from the two dimensional figure to its attribute 
set as “an interpretation”. It is conceivable that 
two different interpretations are in double 
image illusions. We define a set of points that 

                                                      
1  Rubin, E. Synsoplevede Figurer. Gyldendal, 

Koebenhavn. 1915. 
2  Koffka, K. Principles of Gestalt Psychology. 

Routledge & Kegan Paul, London. 1935. 
3  Huang, K.-C. Effects of computer icons and 

figure/background area ratios and color combinations on 
visual search performance on an LCD monitor. Displays, 
vol. 29, issue 3, pp. 237—242. 2008. 

4 Loss, L., Bebis, G., Nicolescu, M., Skurikhin, A. An 
iterative multi-scale tensor voting scheme for perceptual 
grouping of natural shapes in cluttered backgrounds, 
Computer Vision and Image Understanding, vol. 113, 
issue 1, pp. 126—149. 2009. 

5 Huang, L., Pashler, H. A Boolean Map Theory of 
Visual Attention. Psychological Review, Vol. 114, No. 3, 
pp. 599—631. 2007. 

are mapped from the figure image to the 
same attribute as an equivalent class. This 
equivalent class is obtained by an equivalent 
relationship derived from each interpretation. 
So two different sets of equivalent class exist 
in double image illusions.  

   To analyze such double-interpretations, 
we use rough set theory. A rough set is a 
concept of sets approximated by an 
equivalent relationship using two kinds of 
approximation6 7. Its definition is the following. 
Given a universal set U and an equivalent 
relationship R⊆U×U, an equivalent class is 
expressed as [x]R  ={y∈U|xRy} and for X⊆U 
the lower approximation of X is formally 
defined as R*(X)={x∈ U|[x]R⊆ X} and the 
upper approximation as R*(X)={x∈U|[x]R∩X
≠φ}. We can construct the logical structure 
(lattice) by collecting fixed points (X such that 
R*(X)=X, R*(X)=X) with these approximations. 
However this method can extract only simple 
logical structures (Boolean lattices) that 
consist of a combination based on equivalent 
classes.  

We use a lattice driven by pseudo-closure 
fixed points that we constructed8. This is a 
collection of fixed points derived from a 
double approximation based on two different 
equivalent relationships (S, R). The formed 
lattice will not necessarily be a simple logical 
structure as mentioned above, since some of 
the information is lost due to mismatches of 
the different interpretations. Actually it is 
proved that not only Boolean lattices but also 
arbitrary lattices can be created.  

Using this rough set derived lattice we 
analyzed an ambiguity of the figure-ground 
relationship in double image illusions.  

                                                      
6 Pawlak, Z. Information systems-theoretical 

foundations. Information Systems, vol. 6, pp. 205—218. 
1981. 

7  Pawlak, Z. Rough Sets. International Journal of 
Computer and Information Science, vol. 11, pp. 341—356. 
1982. 

8  Gunji, Y.-P., Haruna, T. A Non-Boolean Lattice 
Derived by Double Indiscernibility. Transactions on Rough 
Sets Ⅻ, LNCS, vol. 6190, pp. 211-225. 2010. 
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2. Methods 

2.1. Equivalent Relationship and 
Indiscernibility: 

Rough set theory is founded on the idea 
that the elements in a set are 
indistinguishable. The indistinguishable 
elements have an equivalent relationship and 
belong to the same equivalent class. Let x, y
∈U be elements of a universal set U and f be 
a transformation function. If f(x)=f(y), then x 
and y have an equivalent relationship. 
Express the equivalent relationship as R. 
Then equivalent class is expressed as [x]R={y
∈U|xRy}. Thus the lower approximation of X 
is formally defined as R*(X)={x∈U|[x]R⊆X} 
and the upper approximation as R*(X)={x∈
U|[x]R∩X≠φ}. 

2.2. Galois Connection and Lattice 

In a theory of partially ordered set, Galois 
connection leads to a complete lattice. Given 
two partially ordered sets P and Q, a pair of 
maps (F, G) with F:PQ and G:QP is 
called a Galois connection, if F(x)≦y ⇔ x≦
G(y) for any x∈P and y∈Q. A closure 
operator C:=FG:PP can be constructed 
from a Galois connection such that, for any x, 
y∈P, (i) x≦C(x); (ii) x≦y⇒C(x)≦C(y); (iii) 
CC(x)=C(x). It means that closure operator is 
good and natural operator to take a stable 
structure in a partially ordered set with respect 
to F and G. Overall it results in a (complete) 
lattice LT={x∈P|C(x)=x}. 

In the context of a rough set, given a 
universal set U, R*:P(U)P(U) and 
R*:P(U)P(U) constitute a Galois connection. 
Actually, for any X, Y⊆U,  R*(X)≦Y⇔X≦
R*(Y). Thus C=R*R

* is defined as a closure 
operator and LC={X∈U|C(X)=X} is a complete 
lattice. This lattice, however is too trivial to 
observe the structure, since it is destined to 
be a set lattice, thus for any A ∈ LC, 
complement of A is defined as Ac=U-A. 

If two kinds of binary relationships R and S 
are on a universal set U, and two kinds of 
operations S* and R* (or S* and R*), a pair of 
operations do not constitute a Galois 
connection. Indeed, if an operator T=R*S

* is 
introduced, T is not a closure operator since it 

satisfies only (ii) X⊆Y⇒T(X)⊆T(Y) and (iii) 
TT(X)=T(X) for X, Y⊆U. We call this operator 
pseudo-closure. If fixed points with respect to 
pseudo-closure are collected by LT={X ∈
U|T(X)=X}, LT is a lattice but not a set lattice. 
Inversely, it can be verified that any lattice is 
expressed in the form of LT by determining 
adequate equivalent relationships S and R. It 
gives suitable results, reflecting the two 
different interpretations of illusionary images. 

2.3.   Constructing a Lattice 

Lattice is an algebraic structure where any 
two elements of a partially ordered set have a 
unique least upper bound (join) and a greatest 
lower bound (meet)9 10. As mentioned before, 
given two kinds of equivalent relationship R 
and S on a universal set U, we can construct 
a lattice by <LT; ⊆> with LT={X⊆U|T(X)=X}, 
T= R*S

*.  Actually, an element of LT is a 
subset of the universal set, and order is 
defined by inclusion ⊆. If all subsets of U are 
collected, LT is a power set, and is a set lattice 
in which join and meet are defined by union ∪ 
and intersection ∩, respectively. In general, 
LT≠P(U), thus join and meet are defined by 
the following: for any X, Y∈LT, X∧Y=T(X∩Y), 
X∨Y=T(X∪Y). It can be verified that LT, is 
closed with respect to ∨ and ∧, and that LT is 
a lattice. We call LT ={X∈U|T(X)=X}, with T= 
R*S

*. 
When we construct a lattice of fixed points 

from one equivalent relationship, R*(R*(X))=X, 
we only get a set lattice. A set lattice has two 
important properties in lattice theory such as 
distributivity, A∧(B∨C)=(A∧B)∨(A∧C) for A, 
B, C⊆U, and complementarity of which for 
any X⊆U, there exists Y⊆U such that X∨
Y=U, X∧Y=φ. Note that U and φ are the 
greatest and least element in the lattice LT. A 
distributive complemented lattice is called a 
Boolean lattice. However, when we construct 
a lattice of fixed points from two equivalent 
relationships, R*(S*(X))=X, the resulting lattice 
can be either a Boolean lattice or a non-

                                                      
9  Birkhoff, G. Lattice Theory. Coll. Publ., XXV, 

American Mathematical Society, Providence. 1967. 
10 Davey, B.A., Priestley, H.A. Introduction to Lattice 

and Order, 2nd ed., Cambridge University Press, 
Cambridge. 2002. 
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Boolean lattice. This is a result of two 
equivalent classes fully or partially 
overlapping each other. The differences 
between Boolean and non-Boolean lattices 
are mentioned in the next section. Difference 
between a lattice of LC={X⊆U|C(X)=X} and  
LT ={X⊆U|T(X)=X} with C=R*R

*, T=R*S
* is 

illustrated in Fig. 1. In the case of LC, when we 
denote W=U/R={[a]R, [c]R, [d]R}={{a, b}, {c}, {d, 
e}}, LC=P(W), where all possible combinations 
of equivalent class of R are obtained (Fig. 1 
(a)). By contrast, in LT, although elements of 
LT are possible unions of equivalent class R, 
some elements are missing (Fig. 1 (b)). 

Actually, R*S
*({a, b, c})=R*([a]S∪[b]S)=R*({a, b, 

c, d})=[a]R∪[c]R=    {a, b, c}. Thus {a, b, c} is 
an element of LT, on one hand. On the other 
hand, since R*S

*({a, b, d, e})=R*([a]S∪[b]S∪
[e]S)=R*(U)=U≠{a, b, d, e}, hence {a, b, d, e} 
is missing in LT. Due to the loss of information, 
an obtained lattice can be constructed as a 
non-Boolean lattice. 

 
 
 
 
 

 

 

 

 

 

 

 

  

Fig. 1. (a) Only Boolean lattices result when using fixed points from a single equivalent relationship. 
(b) Boolean as well as non-Boolean lattices result when using fixed points from double equivalent 

relationship. The lattice shown here is a non-Boolean lattice. Elements {a, b}, {d, e}, and {a, b, d, e} 
from (a) are missing in (b). 

 To construct a rough set derived lattice from 
two equivalent relationships, we need two 
interpretations, R and S. Each fixed point X 
considered is an equivalent class, for example 
{a, b} or {c} or {d, e} in Fig. 1 (b) for the 
interpretation R. Treating each equivalent 
class as a unit, we consider its power set: φ, 
{a, b}, {c}, {d, e}, {a, b, c}, {c, d, e}, {a, b, d, e}, 
and U={a, b, c, d, e}. Each equivalent class 
and its power set composition are used as an 
X, and operators S* and R* are applied in this 
order. When applying S* to the X of the 
interpretation group R, one must take the 
upper approximation of X in terms of 
interpretation S since we are applying S*. For 
example, take {c} of interpretation R and apply 

S*. We get S*(X)={b, c, d}. Next, apply R* to 
S*(X). R*({b, c, d}) is {c} in interpretation R, 
since only the equivalent class {c} is included 
completely within the elements {b, c, d}. We 
started with X={c} and we get R*S

*(X)={c}. 
Therefore, the equivalent class {c} is 
considered a fixed point. If we take {a, b} in 
terms of interpretation R and apply S* and 
follow the same procedure, we get R*S

*(X)={a, 
b, c}. Therefore, the equivalent class {a, b} is 
not a fixed point. Repeat this process for all 
element sets in the power set, from φ to U. 
The empty set φ and the universal set U will 
always be a fixed point. Then collect the fixed 
points and use them as elements to build a 
lattice based on its inclusion relationships, 

R*(R*(X))=X 

(a) 

a 
b  

c 

 
d 
e 

{a, b} 
{c} {d, e} 

φ 

{a, b, c} {a, b, 
d, e} 

{c, d, e} 

{a, b, c, d, e} 

(b) 

R*(S*(X))=X 
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with the universal set at the top and the empty 
set φ at the bottom. 

2.4. Relation Table 

   The relationship between the two equivalent 
relationships R and S is expressed by using a 
relation table shown in Table 1. We use such 
tables to organize the information and to find 
fixed points to construct rough set derived 
lattices as explained in the previous 

procedure section (2.4). The example we 
show here uses the two equivalent 
relationships R and S in Fig. 1 (b). Table 1 
shows the relationship between the elements 
of the equivalent relationships R and S. 1’s 
denote the presence of a relationship and 0’s 
denote the lack of a relationship. In 
subsequent sections, we will refer to such 
relation tables. 
 

 

 

 

 

 

Table 1. A relation table showing the relationships between R and S according to the elements 

3.   Procedures 

3.1. Experiment 

Six different double image illusions were 
used as samples (Fig.2). Double image 
illusions were printed on A4 papers in 
monochrome. The randomly ordered samples 
were provided to the subjects for the task. 
Thirty-one individuals participated in the 
experiment. The subjects were healthy 
individuals in their 20s and 30s. The 
experiment room was approximately 20 deg. 
oC and other conditions such as lighting were 
kept constant. When marking the sheet, the 
subject was allowed to turn it or move it freely 
as long as it stayed flush to the plane of the 
table. The color of the ink was pink and the 
line diameter was 5mm.  
  The task of the experiment was to mark six 
attributes of a double image illusion. We 
instructed a subject to view the image as one 
of the two interpretations of the double image 
illusion. Before starting with the task, the 
subject was checked whether or not they 
recognize the instructed interpretation. If they 
do not recognize it, we explained it without 
pointing to any parts or attributes. In a case 
where the subject recognized the image, the 

task was started. If this is not the case, the 
task for this image and a task according to 
another interpretation of the double image 
illusion were skipped. An attribute of an image 
may be an eye, nose, ear, neck, shoulder, or 
any aspect of an image that the subject 
especially noticed. These attributes were 
enclosed with a marker. The shape and size 
of the enclosure were arbitrary. However, 
lines of two different enclosures could not 
touch. The order of the six images and either 
of the two interpretations were randomly 
determined. The two interpretations were 
marked consecutively in different sheets of 
paper.  
   After the experiment, the two sheets from 
the two interpretations were compared for 
overlap in the attribute enclosures (Fig.3.). 
When they overlapped, they were considered 
to have a relationship. An intersection of lines 
is not counted as an overlap and we 
considered only an intersection of inner 
portion of the enclosures. An enclosure on 
one interpretation may have more than one 
attribute overlap with the other interpretation. 

S  
a b c d e 

a 1 1 1 1 0 
b 0 0 0 0 0 
c 0 0 1 1 0 
d 0 0 0 1 1 

R 

e 0 1 1 1 1 
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With these relationships, a relation table was 
made as in Table 1 and 2. The procedure 

(section 2.4) was followed to construct a 
lattice. 

 

 

 

             

           (a)                   (b)                     (c)                            (d)                       (e)                   (f) 

Fig. 2. Images used for the experiment. (a) young lady vs. old lady, (b) duck vs. rabbit, (c) 
indigenous tribe member vs. Inuit, (d) bald man vs. mouse, (e) lady vs. saxophone player, (f) front 

view of a man’s face vs. side view of a witch’s face (by Yuya Maekawa 2008). 

 

 

 

 

                                          (a)                                                                   (b) 

Fig.3. divisions of duck (a) and of rabbit (b). 

 

 

 

 

 

 

Table.2. The relation table of duck vs. rabbit of Fig.3.

3.2  Control 

As a control for the experiment, we created 
two sets of equivalent classes by Monte Carlo 
method and a rough set derived lattice by 
overlapping them. The number of trials was 
100,000 and that of equivalent classes was 

six. We used a grid of 100×100 and followed 
the algorithm below. 
 
• Step 1 Assign 0 to all cells in the grid    

(initialization). 

S  
a b c d e f 

a 1 0 0 0 0 0 
b 1 0 0 0 0 0 
c 1 1 0 0 0 0 
d 0 0 1 0 0 0 
e 0 0 0 1 1 0 

R 

f 0 0 0 0 0 1 
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• Step 2 Assign values from 1 to 6 to 
randomly chosen cells. These are starting 
points of the equivalent classes. 

• Step 3 Choose the number of maximum 
iteration (maximum growth) randomly 
between 1 to 100 and repeat the following 
step as many times as the maximum 
iteration. 

• Step 4 Cells are processed from (0, 0) to 
(99, 99) in the x-direction first. If the cell (x, 
y) has a value other than 0, choose a cell 
randomly from (x+1, y), (x-1, y), (x, y+1), (x, 
y-1). If the randomly chosen new cell has a 
value 0, assign the same number as (x, y). 

3.3 Analysis 

For analyzing the derived lattices, we 
defined a figure and a ground by a 
complementary relationship. In other words 
an equivalent class a has the figure-ground 
relationship with b when they satisfy a∨b =1 
and a∧ b =0. As a simple example, we 
consider Rubin’s vase. When a= ”vase” is the 
figure and b= “ two faces” is the ground, it can 
be said that a and b together express the 
whole image (Rubin’s vase). Therefore, by 
investigating complementary relationships, we 
can analyze the logical structures (the derived 
lattices) in terms of the figure-ground 
relationship.  

Furthermore we introduce distributivity (D) 
and complementarity (C) as barometers for 
the analysis. This is because an equivalent 
class may have more than one complement. 
We define D by complement possession rate 
and C by complement existence rate. D does 
not count an element that has no 
complements. So we get D>=1.0. From this 
definition, if the derived lattice is a distributive 
one, then we get D=1.0 (one-to-one 
complementary relationship). If it is a 
complementary one, then we get C=1.0 (all 
elements have some complements). 
Therefore this definition is consistent with 
lattice theory. However, a distributive lattice 
doesn’t necessarily imply D=1.0. Yet less than 
one percent of all lattices satisfied D=1.0 and 
were distributive in the experiment. On the 
other hand, a complementary lattice and 
C=1.0 are equivalent. Thus, we can say that 
this definition is effective.  

For example, we consider a lattice {φ, a, b, 
ab}. Complementary pairs areφ- ab and a - b. 
So we get D=1.0 since each element has only 
one complement and C=1.0 since each 
element has a complement. In fact, this is a 
Boolean lattice since C=1.0 and D=1.0. For 
the next example, we consider a lattice {φ, a, 
b, c, abc}. Complementary pairs areφ- abc, a 
- b, b - c, and c - a. Obviously C=1.0. But this 
differs from the previous example in that 
D>1.0 since some elements have more than 
one complement. In other words, D=8/5=1.6 
since complementary pairs are 8 (φ - abc, a - 
b, a - c, b - a, b - c, c - a, c - b, and abc –φ) 
and the number of elements with 
complements are 5 (φ, a, b, c, and abc). So, 
this is not a distributive lattice but a 
complementary one since C=1.0. 

4.  Results 

We must be careful about the size of the 
obtained lattices when we analyze their 
distributivity and complementarity. The 
number of elements determines the size of a 
lattice. If it is small, the possibility of element’s 
being complement or complementarity will 
drop to a lower value and complementary 
relationships will be one-to-one. In other 
words, the smaller the size of lattices, the 
greater the chance of increasing its 
distributivity. So we must restrict the size of 
the lattices. 
    For simplicity, we define the size of the 
lattice by “relation size” (i.e., the number of 
rows with values other than 0 times the 
number of columns with values other than 0). 
For example, the relation size of unit matrix 
with 6 degrees is 36 (= 6× 6). In the 
experiment and the control, the value of the 
relation size will be between 0 and 36 since 
the number of equivalent classes is 6. In this 
paper we limited the relation size to more than 
30. In other words, the relation size will be 30 
or 36 and relation table composition will be 5
×6, 6×5, or 6×6. 
    The number of samples that satisfy the 
condition of the relation size was 119 in the 
experiment and 92,697 in the control. We 
calculated C and D of these samples and 
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made a comparison between the experiment 
and the control by using the relative frequency 
distribution of these values (Fig3). 
	
 In the control, both C and D were 
distributed widely (Fig3.a). In the experiment, 
C was distributed widely and D was 
distributed near 1.0 (Fig3.b). Concerning C, 
the average was 0.6578 and the variance was 
0.06978 in the control and the average was 
0.7757 and the variance was 0.05367 in the 
experiment. Concerning D, the average was 
1.331 and the variance was 0.1391 in the 
control and the average was 1.055 and the 
variance was 0.03063 in the experiment. In 

Student’s t-test, the comparison showed 
significant differences in both C and D at 1 
percent (t-value was 4.830 at C and 8.074 at 
D). 
    Distributivity of the experiment was 
remarkable. The average was 1.055 and 
80.67 percent for all those that satisfied D=1.0 
(79.83 percent were distributive lattices). In 
the control, the average was 1.331 and 29.94 
percent of all satisfied D=1.0. Results showed 
that logical structures of double image 
illusions were more distributive than that of 
the control. 

 

 

 

(a)                                                                     (b) 

Fig.4. (a) Control (b) Experiment. The heights of the relative frequency distribution contour lines 
are 0.0002 (purple), 0.002 (blue), 0.02 (green). 

5. Discussion 

The figure and the ground are respectively 
the region emerging as a shape and the 
region perceived as its background.  It is said 
that a figure image is divided into the figure 
and the ground when the figure recognition is 
realized. For example, we consider Rubin’s 
vase. It can be said that the figure-ground 
division corresponds to one type of 
recognition though the figure-ground reversal 
may emerge. “Vase” becomes the figure and 
the other parts (“two faces”) become the 
ground when it is perceived and vice versa. 

It is true about not only the shape of the 
figure images but also each division of them. 
For example, we consider the divisions of a 
face figure. Let the divisions {eyes, nose, 
mouth, ear, chin, hair}. When {eyes} is 
attended, it becomes the figure and {nose, 
mouth, ear, chin, hair} becomes the ground. 
Or, when {nose, mouth} is the figure, {eye, ear, 
chin, hair} becomes the ground. 

In other words, when the shapes or the 
divisions of the figure are recognized, the 
figure and the ground are completely divided. 

At this time, the figure corresponding to the 
recognition decides the ground. So, when the 
recognition, namely, the figure-ground division 
is realized, the figure-ground relationship is 
one-to-one. 

In this paper, the figure-ground relationship 
is defined by the complementary one. 
However, the complementary relationship is 
not always one-to-one. Especially, it becomes 
one-to-many when its logical structure is not a 
distributive lattice. This means that the figure-
ground relationship is not one-to-one, namely, 
the figure-ground division is not realized. 
Otherwise, when the logical structure is a 
distributive lattice, the complementary 
relationship, namely, the figure-ground 
relationship is one-to-one. At this time, the 
figure-ground division is realized. 
    From the experimental result, the possibility 
of obtaining a distributive lattice for the logical 
structures of double image illusions is very 
high. But the possibility of a distributive lattice 
is low for the control. Thus, it can be thought 
that the logical structures of double image 
illusions realize the figure-ground division and 
this is not seen in the control. Though both 
have two different interpretations, it can be 
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thought that only double image illusions have 
special logical structures realizing the figure-
ground division, namely, distributive lattices. 

Then, what is the origin of distributive 
lattices? It comes from ambiguity itself. 
Ambiguity has meaning in both two different 
interpretations and cannot be ignored. If you 
cover ambiguity points by equivalent classes 
derived from both interpretations, you cannot 
avoid including relationship among equivalent 
classes. For example, let us see “young lady 
vs. old lady” as the double image illusion.  Let 
there be two equivalent classes such as 
{{eyes}, {nose}} in “young lady” interpretation. 
Then consider how to cover these two 
ambiguous points in “old lady”. We may cover 
them by one equivalent class such as {right 
eye}. Or, we can cover them by a bigger 
equivalent class such as {both eyes}.  In 
either case, through these ambiguous points, 
the including relationships such as {eye}, 
{nose} ⊆ {right eye} or {eye}, {nose} ⊆ {both 
eyes} are formed between equivalent classes 
derived from two interpretations. Of course, it 

can be possible that equivalent classes from 
one interpretation include that from another 
and vice versa. When all equivalent classes in 
both interpretations are in some including 
relationships, their logical structure becomes 
a Boolean lattice. If some parts deviate from 
that case, divisions of double image illusions 
will be separated into regions with including 
relationships and regions with entanglements. 
Non-distributivity comes from these entangled 
regions that form non-distributive lattices (N5 
or M3) as sub-lattices. But, the possibility to 
generate non-distributive lattices is generally 
small since the sub-lattices have small logical 
structures (relation size). 

Thus, if there are some regions with partial 
including relationships in double image 
illusions, the possibility for its logical 
structures to become distributive lattices is 
very high. It can be said that ambiguity 
generates distributive lattices as a logical 
structure. Of course, this cannot be seen in 
the control since it has randomness and 
doesn’t have such ambiguity.  

References 

Birkhoff, G. (1967). Lattice Theory. Coll. Publ., XXV, American Mathematical Society, Providence.  
Davey, B.A., Priestley, H.A. (2002). Introduction to Lattice and Order, 2nd ed., Cambridge University Press, Cambridge.  
Fig. 2 (a) Lucks Inc. [a blog, in Japanese], http://www.lucks.tv/blog/455.html  
Fig. 2 (b) Juggler News [a blog, in Japanese], http://montafresh.exblog.jp/9708641/  
Fig. 2 (c) Lalala Meditation [a blog, in Japanese], 

 http://plaza.rakuten.co.jp/vijay/diary/200507060001/  
Fig. 2 (d) Uguisu No Kimyouna Seikatsu [a blog, in Japanese], 

 http://ugisu.blog71.fc2.com/blog-category-9.html  
Fig. 2 (e) Kokoro To Karada No Iyashi No Message (A Healing Message for the Heart and the Body) [a blog, in 

Japanese], http://kkmessage.exblog.jp/9029398/  
Fig. 2 (f) Tayama Lab., Department of Psychology, Hokkaido University,  
     http://www3.psych.let.hokudai.ac.jp/tool/maekawa/ojisamahamajo.gif 
Gunji, Y.-P., Haruna, T. (2010). A Non-Boolean Lattice Derived by Double Indiscernibility. Transactions on Rough Sets 
Ⅻ, LNCS, vol. 6190, pp. 211-225. 

Huang, K.-C. (2008). Effects of computer icons and figure/background area ratios and color combinations on visual 
search performance on an LCD monitor. Displays, vol. 29, issue 3, pp. 237—242. 

Huang, L., Pashler, H. (2007). A Boolean Map Theory of Visual Attention. Psychological Review, Vol. 114, No. 3, pp. 
599—631. 

Koffka, K. (1935). Principles of Gestalt Psychology. Routledge & Kegan Paul, London. 
Loss, L., Bebis, G., Nicolescu, M., Skurikhin, A. (2009). An iterative multi-scale tensor voting scheme for perceptual 

grouping of natural shapes in cluttered backgrounds, Computer Vision and Image Understanding, vol. 113, issue 1, pp. 
126—149. 

Pawlak, Z. (1981). Information systems-theoretical foundations. Information Systems, vol. 6, pp. 205—218. 
Pawlak, Z. (1982). Rough Sets. International Journal of Computer and Information Science, vol. 11, pp. 341—356. 
Rubin, E. (1915). Synsoplevede Figurer. Gyldendal, Koebenhavn. 


