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ollegues.1. Introdu
tionIn several already published arti
les, I defend theuse of Bayesian Statisti
s in the epistemologi
alframework of 
ognitive 
onstru
tivism. Inparti
ular, I show how the FBST -The FullBayesian Signi�
an
e Test for pre
ise hypotheses- 
an be used as a tool for dete
tion, re
ognitionand validation of eigen-solutions, see (Borges andStern, 2007), (Pereira et al., 2008), and (Stern,2003, 2004, 2006, 2007a, 2007b, 2008a, 2008b,2009). �Obje
ts as eigen-solutions� is a keymetaphor of 
ognitive 
onstru
tivism as developedby the Austrian-Ameri
an philosopher Heinz vonFoerster, see (Foerster, 2003).In Statisti
s, spe
ially in the design of statisti
alexperiments, Randomization plays a role whi
his in the very 
ore of obje
tive-subje
tive
omplementarity, a 
on
ept of great signi�
an
ein the epistemologi
al framework of 
ognitive
onstru
tivism as well as in the theory of Bayesianstatisti
s. The pivotal role of randomizationin a well designed statisti
al experiment isthat of a de
oupling operation used to severillegitimate fun
tional links, thus avoiding spuriousasso
iations, breaking false in�uen
es, separating
onfounding variables, et
, see (Stern, 2008a) and

(Colla and Stern, 2008).The use of randomization in Statisti
s isan original idea of Charles Saunders Peir
eand Joseph Jastrow, see (Peir
e and Jastrow,1884) and (Ha
king, 1988). Randomization isnow a standard requirement for many s
ienti�
studies. In (Stern 2007b, 2008a) I 
onsider theposition of C.S.Peir
e as a forerunner of 
ognitive
onstru
tivism, based on the importan
e,relevan
e and 
oheren
e of his philosophi
al ands
ienti�
 work. Among his several 
ontributions,the introdu
tion of randomization in statisti
aldesign stands indubitably out. In future arti
les,I hope to further expand the analysis of the roleof Bayesian Statisti
s in 
ognitive 
onstru
tivismand provide other interesting appli
ations. I shallherein analyze some obje
tions to the 
on
epts ofprobability, statisti
s and randomization posed byGeorge Spen
er-Brown, a �gure of great in�uen
ein the �eld of radi
al 
onstru
tivism.In what follows, se
tion 2 
orresponds to the�rst part of this arti
le's title and elaborates upon�the 
ase of Spen
er-Brown vs. probability andstatisti
s�. Corresponding to the se
ond part ofthe title, se
tion 3 provides the �the testimonyof entropy on subje
tive randomness�. Se
tion4 o�ers an obje
tive perspe
tive on randomness,CC: Creative Commons Li
ense, 2003



2 Author J.M.Sternthrough an entropy based informational analysis.Se
tion 5 presents our �nal 
on
lusions.2. The Case of Spen
er-Brown AgainstProbability and Statisti
sIn (Spen
er-Brown, 1953a, 1953b, 1957),Spen
er-Brown analyzed some apparent paradoxesinvolving the 
on
ept of randomness, and
on
luded that the language of probability andstatisti
s was inappropriate for the pra
ti
eof s
ienti�
 inferen
e. In subsequent work,(Spen
er-Brown, 1969), he reformulates 
lassi
allogi
 using only a generalized nor operator(marked not-or, unmarked or), that he representsà la mode of Charles Saunders Peir
e or JohnVenn, by a graphi
al boundary or distin
tionmark, see (Carnielli, 2009), (Edwards, 2004),(Kau�mann, 2001, 2006), (Meguire, 2003),(Peir
e, 1880) and (She�er, 1913).Making (or arbitrating) distin
tions is,a

ording to Spen
er-Brown, the basi
 (if not theonly) operation of human knowledge, an idea thathas either in�uen
ed or been dire
tly exploredby several authors in the radi
al 
onstru
tivistmovement. The following quotations, from(Spen
er-Brown, 1957, p.23,p.66,p.105), aretypi
al arguments used by Spen
er-Brown in hisreje
tion of probability and statisti
s:�Retroa
tive re
lassi�
ation of observations inone of the s
ientist's most important tools, andwe shall meet it again when we 
onsider statisti-
al arguments.��We have found so far that the 
on
ept of prob-ability used in statisti
al s
ien
e is meaninglessin its own terms; but we have found also that,however meaningful it might have been, its mean-ingfulness would nevertheless have remained fruit-less be
ause of the impossibility of gaining infor-mation from experimental results, however signif-i
ant. This �nal paradox, in some ways the mostbeautiful, I shall 
all the Experimental Paradox.��The essen
e of randomness has been taken tobe absen
e of pattern. But what has not hith-erto been fa
ed is that the absen
e of one patternlogi
ally demands the presen
e of another. It isa mathemati
al 
ontradi
tion to say that a serieshas no pattern; the most we 
an say is that ithas no pattern that anyone is likely to look for.The 
on
ept of randomness bears meaning only inrelation to the observer: If two observers habit-ually look for di�erent kinds of pattern they arebound to disagree upon the series whi
h they 
all

random.�Several authors 
on
ur, at least in part, with myopinion about Spen
er-Brown's te
hni
al analysisof probability and statisti
s, see (Flew, 1959),(Falk and Konold, 2005), (Good, 1958)a and(Mundle, 1959). In Se
tion 3, I 
arefully explainwhy I disagree with it. In some of my arguments,whi
h are are based on information theory and thenotion of entropy, I dissent from Spen
er-Brown'sinterpretation of measures of order-disorder insequential signals. In (Atkins 1984), (Attneave,1959), (Dugdale, 1996), (Krippendor�, 1986) and(Tarasov, 1988) some of the basi
 
on
epts in thisarea are reviewed with a minimum of mathemati
s.I also disapprove some of Spen
er Brown'sproposed methodologies to dete
t �relevant�event sequen
es, that is, his 
riteria to �markdistin
t patterns� in empiri
al observations. Myobje
tions have a lot in 
ommon with thestandard 
aveats against ex post fa
to ��shingexpeditions� for interesting out
omes, or simplepost ho
 �sub-group analysis� in experimental databanks. This kind of retroa
tive or retrospe
tivedata analyses is 
onsidered a questionablestatisti
al pra
ti
e, and pointed as the 
ulprit ofmany mis
on
eived studies, misleading argumentsand mistaken 
on
lusions. The literature onstatisti
al methodology for 
lini
al trials has beenparti
ularly keen in warning against this kind ofpra
ti
e. See (Tribble, 2008) and (Wang etal., 2007) for two interesting papers addressingthis spe
i�
 issue and published in high impa
tmedi
ine journals less than a year before I wrotethis text. When 
onsulting for pharma
euti
al
ompanies or advising in the design of statisti
alexperiments, I often �nd it useful to quote ConanDoyle's Sherlo
k Holmes, in The Adventure ofWisteria Lodge:�Still, it is an error to argue in front of yourdata. You �nd yourself insensibly twisting themaround to �t your theories.�Finally, I am also suspi
ious or skepti
alabout the intension behind some appli
ationsof Spen
er-Brown's resear
h program, in
ludingthe use of extrasensory empathi
 per
eptionfor 
oded message 
ommuni
ation, exer
ises onobje
t manipulation using paranormal powers, et
.Unable to re
on
ile his psy
hi
 resear
h programwith statisti
al s
ien
e, Spen
er-Brown had noregrets in disqualifying the later, as he 
learlystated in the prestigious s
ienti�
 journal Nature,see (Spen
er-Brown, 1953b,p.594):[On telepathy:℄ �Taking the psy
hi
al resear
hCC: Creative Commons Li
ense, 2003



tripleC 1(1): 1-10, 2003 3data (that is, the residuum when fraud and in-
ompeten
e are ex
luded), I tried to show thatthese now threw more doubt upon existing pre-suppositions in the theory of probability than inthe theory of 
ommuni
ation.�[On psy
hokinesis:℄ �If su
h an `agen
y' 
ouldthus `upset' a pro
ess of randomizing, then all our
on
lusions drawn through the statisti
al tests ofsigni�
an
e would be equally a�e
ted, in
ludingthe 
on
lusions about the `psy
hokinesis' exper-iments themselves. (How are the target num-bers for the die throws to be randomly 
hosen?By more die throws?) To speak of an `agen
y'whi
h 
an `upset' any pro
ess of randomizationin an un
ontrollable manner is logi
ally equivalentto speaking of an inadequa
y in the theoreti
almodel for empiri
al randomness, like the luminifer-ous ether of an earlier 
ontroversy, be
omes, withthe obsoles
en
e of the 
al
ulus in whi
h it o

urs,a super�uous term.�Spen
er-Brown's 
on
lusions, in
luding hisanalysis of probability, were 
onsidered to be
ontroversial (if not unreasonable or extravagant)even by his own 
olleagues at the So
iety ofPsy
hi
al Resear
h, see (S
ott, 1958), (Soal etal., 1958). It seems that 
urrent resear
h in thisarea, even not being free (or afraid) of 
riti
ism,has abandoned the path of naïve 
onfrontationwith statisti
al s
ien
e, see (Atmanspa
her, 2005)and (Ehm, 2005). For additional 
omments, see(Henning, 2006), (Kapt
huk and Kerr, 2004),(Utts, 1991), and (Wassermann, 1955).Curiously, Charles Saunders Peir
e and hisstudent Joseph Jastrow, who introdu
ed the ideaof randomization in statisti
al trials, also struggledwith some of the very same dilemmas fa
ed bySpen
er-Brown, namely, the eventual dete
tion ofdistin
t patterns or seemingly ordered (sub)stringsin a long random sequen
e. Peir
e and Jastrow didnot have at their disposal the heavy mathemati
alartillery I have quoted in the previous paragraphs.Nevertheless, as experien
ed explorers that are noteasily lured, when traveling in desert sands, bythe mirage of a mispla
ed oasis, these intrepidpioneers were able to avoid the 
on
eptual pitfallsthat lead Spen
er-Brown so far astray. Formore details see (Stern, 2008a), (Ha
king, 1988),(Peir
e and Jastrow, 1884) and (Bonassi et al.,2008, 2009) and (Dehue, 1997).As stated in the introdu
tion, the 
ognitive
onstru
tivist framework 
an be supported bythe FBST, a non-de
ision theoreti
 formalismdrawn from Bayesian statisti
s. The FBST

was 
on
eived as a tool for validating obje
tiveknowledge of eigen-solutions and, as su
h, 
an beeasily integrated to the epistemologi
al frameworkof 
ognitive 
onstru
tivism in s
ienti�
 resear
hpra
ti
e. Contrasting our distin
t views of
ognitive 
onstru
tivism, it is not at all surprisingthat I have 
ome to 
on
lusions 
on
erningthe use of probability and statisti
s, and alsoto the relation between probability and logi
,that are fundamentally di�erent from those ofSpen
er-Brown.3. Pseudo, Quasi and Subje
tiveRandomnessThe fo
us of the present se
tion are the propertiesof �natural� and �arti�
ial� random sequen
es.The implementation of probabilisti
 algorithmsrequire good random number generators, (RNGs).These algorithms in
lude: numeri
al integrationmethods su
h as Monte Carlo or Markov ChainMonte Carlo (MCMC); evolutionary 
omputingand sto
hasti
 optimization methods su
h asgeneti
 programming and simulated annealing;and also, of 
ourse, the e�
ient implementationof randomization methods.The most basi
 random number generatorrepli
ates i.i.d. (independent and identi
allydistributed) random variables uniformlydistributed in the unit interval, [0, 1[. Fromthis basi
 uniform generator one gets a uniformgenerator in the d-dimensional unit box, [0, 1[d,and, from the later, non-linear generators for manyother multivariate distributions, see (Hammersleyand Hands
omb, 1964) and (Ripley, 1987).Histori
ally, the te
hnology of random numbergenerators was developed in the 
ontext ofMonte Carlo methods. The nature of MonteCarlo algorithms makes them very sensitive to
orrelations, auto-
orrelations and other statisti
alproperties of the random number generator usedin its implementation. Hen
e, in this 
ontext, thestatisti
al properties of �natural� and �arti�
ial�random sequen
es 
ame to 
lose s
rutiny. Forthe aforementioned histori
al and te
hnologi
alreasons, Monte Carlo methods are frequently usedas a ben
hmark for testing the properties ofthese generators. Hen
e, although Monte Carlomethods proper lie outside the s
ope of this arti
le,we shall keep them as a standard appli
ationben
hmark in our dis
ussions.The 
lever ideas and also the 
aveats ofengineering good random number generatorsCC: Creative Commons Li
ense, 2003



4 Author J.M.Sternare in the 
ore of many paradoxes found bySpen
er-Brown. The obje
tive of this se
tion isto explain the basi
 ideas behind these generatorsand, in so doing, avoid the 
on
eptual traps andpitfalls that took Spen
er-Brown analyses so mu
ho� 
ourse.3.1. Random Number GeneratorsThe 
on
ept of randomness is usually appliedto a variable or a pro
ess (to be generatedor observed) involving some un
ertainty. Thefollowing de�nition is presented at (Hammersleyand Hands
omb, 1964,p.10):�A random event is an event whi
h has a 
han
eof happening, and probability is a numeri
al mea-sure of that 
han
e.�Monte Carlo, and several other probabilisti
algorithms, require a random number generator.With the last de�nition in mind, engineeringdevi
es based on sophisti
ated physi
al pro
esseshave been built in the hope of o�ering a sour
e of�true� random numbers. However, these spe
ialdevi
es were 
umbersome, expensive, not portablenor universally available, and often unreliable.Moreover, pra
titioners soon realized that simpledeterministi
 sequen
es 
ould su

essfully beused to emulate a random generator, as statedin the following quotes (our emphasis) at(Hammersley and Hands
omb, 1964,p.26) and(Ripley, 1987,p.15):�For ele
troni
 digital 
omputer it is most 
on-venient to 
al
ulate a sequen
e of numbers oneat a time as required, by a 
ompletely spe
i�edrule whi
h is, however, so devised that no rea-sonable statisti
al test will dete
t any signi�
antdeparture from randomness. Su
h a sequen
e is
alled pseudorandom. The great advantage of aspe
i�ed rule is that the sequen
e 
an be exa
tlyreprodu
ed for purposes of 
omputational 
he
k-ing.��A sequen
e of pseudorandom numbers (Ui) isa deterministi
 sequen
e of numbers in [0, 1] hav-ing the same relevant statisti
al properties as asequen
e of random numbers.�Many deterministi
 random emulators usedtoday are Linear Congruential Pseudo-RandomGenerators (LCPRG), as in the following example:
xi+1 = (axi + c)modm ,where the multiplier a, the in
rement c and themodulus m should obey the 
onditions: (i) c and

m are relatively prime; (ii) a− 1 is divisible by all

prime fa
tors of m; (iii) a− 1 is a multiple of 4 if
m is a multiple of 4. LCPRG's are fast and easy toimplement if m is taken as the 
omputer's wordrange, 2s, where s is the 
omputer's word size,typi
ally s = 32 or s = 64. The LCPRG's startingpoint, x0, is 
alled the seed. Given the same seedthe LCPG will reprodu
e the same sequen
e, avery 
onvenient feature for tra
ing, debugging andverifying appli
ation programs.However, LCPRG's are not an universalsolution. For example, it is trivial todevise some statisti
s that will be far fromrandom, see (Marsaglia, 1968). There theimportan
e of the words reasonable and rele-vant in the last quotations be
omes 
lear: Formost pra
ti
al appli
ations these statisti
s areirrelevant. LCPRG's 
an also exhibit very longrange auto-
orrelations and, unfortunately, theseare more likely to a�e
t long simulated timeseries required in some spe
ial appli
ations. The
omposition of several LCPRG's by periodi
 seedrefresh may mitigate some of these di�
ulties, see(Ripley 1987). LCPRG's are also not appropriateto some spe
ial appli
ations in 
ryptography, see(Boyar, 1989). Current state of the art generatorsare given in (Matsumoto et al., 1992, 1998).3.2. Chan
e is Lumpy - Randomand Quasi-Random Generators�Chan
e is Lumpy� is Robert Abelson's First Lawof Statisti
s, stated in (Abelson, 1995,p.xv).The probabilisti
 expe
tation is a linearoperator, that is, E(Ax + b) = AE(x) + b, where
x in random ve
tor and A and b are a determinedmatrix and ve
tor. The Covarian
e operator isde�ned as Cov(x) = E((x−E(x))⊗ (x−E(x))).Hen
e, Cov(Ax + b) = ACov(x)A′. Therefore,given n i.i.d. s
alar variables, xi |Var(xi) = σ2,the varian
e of their mean, m = (1/n)1′x, is givenby σ2/n. So, in this 
ase, the mean value 
onvergeto the expe
ted value at a rate of 1/

√

(n).Quasi-random sequen
es are deterministi
sequen
es built not to emulate random sequen
es,as pseudo-random sequen
es do, but to a
hievefaster 
onvergen
e rates. For d-dimensionalquasi-random sequen
es, an appropriate measureof �u
tuation, 
alled dis
repan
y, only growsat a rate of log(n)d, hen
e growing mu
hslower than √

(n). Therefore, the 
onvergen
erate 
orresponding to quasi-random sequen
es,
log(n)d/n, is mu
h faster than the one
orresponding to (pseudo) random sequen
es,CC: Creative Commons Li
ense, 2003
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√

(n)/n. Figure 1 allows the visual 
omparison oftypi
al (pseudo) random (left) and quasi-random(right) sequen
es in [0, 1[2. By visual inspe
tionwe see that the points of the quasi-randomsequen
e are more �homogeneously s
attered�that is, they do not �
lump together�, as the pointof the (pseudo) random sequen
e often do.Let us 
onsider an axis-parallel re
tangles in theunit box,
R = [a1, b1[× [a2, b2[× . . . [ad, bd[ ⊆ [0, 1[d .The dis
repan
y of the sequen
e s1:n in box R,and the overall dis
repan
y of the sequen
e arede�ned as

D(s1:n, R) = nVol(R) − |s1:n ∩ R| ,

D(s1:n) = supR∈[0,1[d |D(s1:n, R)| .It is possible to prove that the dis
repan
y of theHalton-Hammersley sequen
e, de�ned next, is oforder O(log(n)d−1), see (Matousek, 1991, 
h.2).Halton-Hammersley sets: Given d − 1 distin
tprime numbers, p(1), p(2), . . . p(d − 1), the
i-th point, xi, in the Halton-Hammersley set,
{x1, x2, . . . xn}, is for i = 1 : n − 1,

i = a0 + p(k)a1 + p(k)2a2 + p(k)3a3 + . . . ,

rp(k)(1) =
a0

p(k)
+

a1

p(k)2
+

a2

p(k)3
+ . . . .

xi =
[

i/n, rp(1)(i), rp(2)(i), . . . rp(d−1)(i)
]′

,That is, the (k + 1)-th 
oordinate of xi, xi
k+1 =

rp(k)(i), is obtained by the bit (or digit) reversalof i written in p(k)-ary or base p(k) notation.The Halton-Hammersley set is a generalizationof van der Corput set, built in the bidimensionalunit square, d = 2, using the �rst primenumber, p = 2. The following example, from(Hammersley and Hands
omb, 1964,p.33) and(Guenther, 2003,p.117), builds the 8-point vander Corput set, expressed in binary and de
imalnotation.fun
tion x= 
orput(n,b)% size n base b v.d.
orput setm=floor(log(n)/log(b));u=1:n; D=[℄;for i=0:md= rem(u,b);u= (u-d)/b;D= [D; d℄;endx=((1./b').^(1:(m\ma1)))*D;

De
imal Binary
i r2(i) i r2(i)1 0.5 1 0.12 0.21 10 0.013 0.75 11 0.114 0.125 100 0.0015 0.625 101 0.1016 0.375 110 0.0117 0.875 111 0.1118 0.0625 1000 0.0001

Figure 1: Pseudo/quasi-random point setsQuasi-random sequen
es, also known aslow-dis
repan
y sequen
es, 
an substitutepseudo-random sequen
es in some appli
ations ofMonte Carlo methods, a
hieving higher a

ura
ywith less 
omputational e�ort, see (Merkel,2005), (Okten, 1999) and (Sen et al., 2006).Nevertheless, sin
e by design the points of aquasi-random sequen
e tend to avoid ea
h other,strong (negative) 
orrelations are expe
ted toappear. In this way, the very reason that 
an makequasi-random sequen
es so helpful, 
an ultimatelyimpose some limits to their appli
ability. Someof these problems are 
ommented in (Moroko�,1998,p.766):�First, quasi-Monte Carlo methods are valid forintegration problems, but may not be dire
tly ap-pli
able to simulations, due to the 
orrelations be-tween the points of a quasi-random sequen
e. ...A se
ond limitation: the improved a

ura
y ofquasi-Monte Carlo methods is generally lost forproblems of high dimension or problems in whi
hthe integrand is not smooth.�3.3. Subje
tive Randomness ParadoxesWhen asked to look at patterns like those in Figure1, many subje
ts per
eive the quasi-random setas �more random� than the (pseudo) random set.How 
an this paradox be explained? This was thetopi
 of many psy
hologi
al studies in the �eld ofsubje
tive randomness. The quotation in the nextparagraph is from one of these studies, (Falk andKonold, 1997,p.306), emphasis are ours:CC: Creative Commons Li
ense, 2003



6 Author J.M.Stern�One major sour
e of 
onfusion is the fa
t thatrandomness involves two distin
t ideas: pro
essand pattern, (Zabell, 1992). It is natural tothink of randomness as a pro
ess that generatesunpredi
table out
omes, this is a sto
hasti
 pro-
ess a

ording to (GellMann, 1994). Random-ness of a pro
ess refers to the unpredi
tabilityof the individual event in the series (Lopes, 1982,1987). This is what Spen
er Brown 9Spen
er-Brown, 1957) 
alls primary randomness. How-ever, one usually determines the randomness ofthe pro
ess by means of its output, whi
h is sup-posed to be patternless. This kind of randomnessrefers, by de�nition, to a sequen
e. It is labeledse
ondary randomness by Spen
er Brown. It re-quires that all symbol types, as well as all orderedpairs (diagrams), ordered triplets (trigrams)... n-grams in the sequen
e be equiprobable. This def-inition 
ould be valid for any n only in in�nitesequen
es, and it may be approximated in �nitesequen
es only up to ns mu
h smaller than thesequen
e's length. The entropy measure of ran-domness is based on this de�nition, see 
h.1 and2 of (Attneave, 1959).These two aspe
ts of randomness are 
loselyrelated. We ordinarily expe
t out
omes generatedby a random pro
ess to be patternless. Most ofthem are. Conversely, a sequen
e whose order israndom supports the hypothesis that it was gener-ated by a random me
hanism, whereas sequen
eswhose order is not random 
ast doubt on the ran-dom nature of the generating pro
ess.�Spen
er-Brown was intrigued by the apparentin
ompatibility of the notions of primary andse
ondary randomness. The apparent 
ollisionof these two notions generates several interestingparadoxes, taking Spen
er-Brown to question theappli
ability of the 
on
ept of randomness inparti
ular and probability and statisti
al analysis ingeneral, see (Spen
er-Brown, 1953a, 1953b, 1957)and also (Flew, 1959), (Good, 1958), (Mundle,1959), (Henning, 2006), (Kapt
huk, 2004), (Utts,1991), (Wassermann, 1955) and (Tversky, 1971).In fa
t, several subsequent psy
hologi
al studieswere able to 
on�rm that, for many subje
ts, theintuitive or 
ommon-sense per
eption of primaryand se
ondary randomness are quite dis
repant.However, a 
areful mathemati
al analysis 
anre
on
ile the two notions of randomness. Thesetopi
s are dis
ussed in this se
tion.The relation between the joint and 
onditionalentropy for a pair of random variables,
H(i, j) = H(j) + H(i | j) = H(i) + H(j | i) ,

motivates the de�nition of �rst, se
ond and higherorder entropies, see se
tion 4. These are de�nedover the distribution of words of size m in a stringof letters from an alphabet of size a.
H1 =

∑

j
p(j) log p(j) ,

H2 =
∑

i,j
p(i)p(j | i) log p(j | i) ,

H3 =
∑

i,j,k
p(i)p(j | i)p(k | i, j) log p(k | i, j) . . .It is possible to use these entropy measures toassess the disorder or la
k of pattern in a given�nite sequen
e, using the empiri
al probabilitydistributions of single letters, pairs, triplets, et
.However, in order to have a signi�
ant empiri
aldistribution of m-plets, any possible m-plet mustbe well represented in the sequen
e, that is, theword size, m, is required to be very short relativeto the sequen
e log-size, that is, m << loga(n).

Figure 2: Pixel alternation - H2-entropy, ENvs. apparent randomness, AR.In the arti
le (Falk and Konold, 1997), Figure2 displays the typi
al per
eived or apparentrandomness of Boolean (0-1) bit sequen
es,represented as bla
k-and-white pixel grids, versusthe se
ond order entropy of the same strings,see also (Attneave, 1959). Clearly, there isa remarkable bias of the apparent randomnessrelative to the entropi
 measure.This e�e
t is known as the gambler's fal-la
y when betting on 
ool spots. It 
onsists ofexpe
ting the random sequen
e to �
ompensate��nite average �u
tuations from expe
ted values.This e�e
t is also des
ribed in (Falk and Konold,1997,p.303): � When people invent super�uousexplanations be
ause they per
eive patterns inrandom phenomena, they 
ommit what is knownin statisti
al parlan
e as Type I error. The otherway of going awry, known as Type H error, o

urswhen one dismisses stimuli showing some regu-larity as random. The numerous randomizationstudies in whi
h parti
ipants generated too manyCC: Creative Commons Li
ense, 2003



tripleC 1(1): 1-10, 2003 7alternations and viewed this output as random, aswell as the judgments of overalternating sets asmaximally random in the per
eption studies, wereall instan
es of type II error in resear
h results.�Of 
ourse, some gamblers exhibit the oppositebehavior, preferring to bet on hot spots, expe
tingthe same �u
tuations to reo

ur. These e�e
tsare the 
onsequen
e of a per
eived 
oupling, by anegative or positive 
orrelation or other measureof asso
iation, between non overlapping segmentsthat are in fa
t supposed to be de
oupled,un
orrelated or have no asso
iation, that is,to be independent. For a statisti
al analysis,see (Bonassi et al., 2008, 2009). A possiblepsy
hologi
al explanation of the gambler's falla
yis given by the 
onstru
tivist theory of JeanPiaget, see (Piaget, 1951), (Falk and Konold,1997,p.316 in whi
h any �lump� in the sequen
eis (miss) per
eived as non-random order:�In analogy to Piaget's operations, whi
h are
on
eived as internalized a
tions, per
eived ran-domness might emerge from hypotheti
al a
tion,that is, from a thought experiment in whi
h onedes
ribes, predi
ts, or abbreviates the sequen
e.The harder the task in su
h a thought experiment,the more random the sequen
e is judged to be.�The same hierar
hi
al de
omposition s
hemeused for higher order 
onditional entropy measures
an be adapted to measure the disorder orpatternless of a sequen
e, relative to a givensubje
t's model of �
omputer� or generationme
hanism. In the 
ase of a dis
retestring, this generation model 
ould be, forexample, a deterministi
 or probabilisti
 Turingma
hine, a �xed or variable length Markov
hain, et
. It is assumed that the modelis regulated by a 
ode, program or ve
torparameter, θ, and outputs a data ve
tor orobserved string, x. The hierar
hi
al 
omplexitymeasure of su
h a model emulates the Bayesianprior and 
onditional likelihood de
omposition,
H(p(θ, x)) = H(p(θ)) + H(p(x | θ)), that is, thetotal 
omplexity is given by the 
omplexity of theprogram plus the 
omplexity of the output giventhe program. This is the starting point for several
omplexity models, like Andrey Kolmogorov, RaySolomono� and Gregory Chaitin's 
omputational
omlexity models, Jorma Rissanen's MinimumDes
ription Length (MDL), and Chris Walla
eand David Boulton's Minimum Message Length(MML). All these alternative 
omplexity models
an also be used to su

essfully re
on
ile thenotions of primary and se
ondary randomness,

showing that they are asymptoti
ally equivalent,see (Chaitin, 1975, 1988), (Ka
, 1983), (Kapur,1989), (Rissanen, 1989) and (Walla
e, 2005).4. Entropy and Some GeneralizationsEntropy is the 
ornerstone 
on
ept of thepre
eding se
tion, used as a 
entral idea in theunderstanding of order and disorder in sto
hasti
pro
esses. Entropy is the key that allowed usto unlo
k the mysteries and solve the paradoxesof subje
tive randomness, making it possibleto re
on
ile the notions of unpredi
tability ofsto
hasti
 pro
ess and patternless of randomlygenerated sequen
es. Similar entropy basedarguments reappear, in more abstra
t, subtleor intri
ate forms, in the analysis of te
hni
alaspe
ts of Bayesian statisti
s like, for example,the use of prior and posterior distributions and theinterpretation of their informational 
ontent. Thisse
tion gives a short review 
overing the de�nitionof entropy, its main properties, and some of itsmost important uses in mathemati
al statisti
s.The origins of the entropy 
on
ept lay in the�elds of Thermodynami
s and Statisti
al Physi
s,but its appli
ations have extended far and wideto many other phenomena, physi
al or not. Theentropy of a probability distribution, H(p(x)), isa measure of un
ertainty (or impurity, 
onfusion)in a system whose states, x ∈ X , have p(x)as probability distribution. We follow 
losely thepresentation in the following referen
es. For thebasi
 
on
epts, see (Dugdale, 1996), (Csiszar,1974), (Khin
hin, 1953) and (Renyi, 1961, 1970).4.1. Boltzmann-Gibbs-Shannon EntropyIf H(p(x)) is to be a measure of un
ertainty, itis reasonable that it should satisfy the followinglist of requirements. For the sake of simpli
ity, wepresent the theory in �nite spa
es.1) If the system has n possible states,
x1, . . . xn, the entropy of the system with a givendistribution, pi ≡ p(xi), is a fun
tion H su
h that
H = Hn(p1, . . . , pn).2) H is a 
ontinuous fun
tion.3) H is a fun
tion symmetri
 in its arguments.4) The entropy is un
hanged if an impossiblestate is added to the system, that is,
Hn(p1, . . . pn) = Hn+1(p1, . . . pn, 0).5) The system's entropy is minimal and nullwhen the system is fully determined, that is,
Hn(0, . . . , 0, 1, 0, . . .0) = 0.CC: Creative Commons Li
ense, 2003



8 Author J.M.Stern6) The entropy is maximal when all states areequally probable, that is, { 1
n
1 } = argmax Hn.7) Maximal entropy in
reases with the numberof states, i.e., Hn+1

(

1
n+11) > Hn

(

1
n
1) .8) Entropy is an extensive quantity, i.e., giventwo independent systems, with distributions p e q,the entropy of the 
omposite system is additive,i.e., Hnm(r) = Hn(p) + Hm(q), ri,j = pi qj .The Boltzmann-Gibbs-Shannon measure ofentropy, Hn(p) = −In(p) = −

∑n

i=1 pi log(pi) =
−Ei log(pi) , 0 log(0) ≡ 0 , satis�es requirements(1) to (8), and is the most usual measure ofentropy. In Physi
s it is usual to take the logarithmin Napier base, while in Computer S
ien
e it isusual to take base 2 and in Engineering it is usualto take base 10. The opposite of the entropy,
I(p) = −H(p), the Neguentropy, is a measure ofInformation available about the system.For the Boltzmann-Gibbs-Shannon entropywe 
an extend requirement 8, and 
omputethe 
omposite Neguentopy even withoutindependen
e. Writing qi

j = Pr(j | i), we get,
Inm(r) = In(p) +

∑n

i=1
pi Im(qi) .If we add this last identity as item number9 in the former list of requirements, we havea 
hara
terization of Boltzmann-Gibbs-Shannonentropy, see (Khin
hin, 1953), (Renyi, 1970).Like many important 
on
epts, this measure ofentropy was dis
overed and re-dis
overed severaltimes in di�erent 
ontexts, and sometimes theuniqueness and identity of the 
on
ept was notimmediately re
ognized. A well known ane
doterefers the answer given by von Neumann, afterShannon asked him how to 
all a �newly�dis
overed 
on
ept in Information Theory. Asreported by Shannon in (Tribus, 1971,p.180):�My greatest 
on
ern was what to 
all it. Ithought of 
alling it information, but the wordwas overly used, so I de
ided to 
all it un
ertainty.When I dis
ussed it with John von Neumann, hehad a better idea. Von Neumann told me, Youshould 
all it entropy, for two reasons. In the �rstpla
e your un
ertainty fun
tion has been used instatisti
al me
hani
s under that name, so it al-ready has a name. In the se
ond pla
e, and moreimportant, nobody knows what entropy really is,so in a debate you will always have the advantage.�4.2. Csiszar's Divergen
eIn order to 
he
k that requirement (6) is satis�ed,we 
an use (with q ∝ 1) the following lemma:

Lemma: Shannon InequalityIf p and q are two distributions over a system with
n possible states, and qi 6= 0, then the Informationof p Relative to q, In(p, q), is positive, ex
ept if
p = q, when it is null,Proof: If ϕ is a 
onvex fun
tion, Jenseninequality holds, E (ϕ(x)) ≥ ϕ (E(X)) . Taking
ϕ(t) = t ln(t) and ti = pi/qi, we get Eq (t) = 1,and In(p, q) =

∑

qiti log ti ≥ 1 log(1) = 0.Shannon's inequality motivates the use ofthe Relative Information as a measure of(non symmetri
) �distan
e� between distributions.In Statisti
s this measure is known as theKullba
k-Leibler distan
e. The denominationsDire
ted Divergen
e or Cross Information areused in Engineering. The proof of Shannoninequality motivates the following generalizationof divergen
e:De�nition: Csiszar's ϕ-divergen
e.Given a 
onvex fun
tion ϕ, where 0ϕ(0/0) = 0and 0ϕ(c/0) = c limt→∞ ϕ(t)/t,
dϕ(p, q) =

∑n

i=1
qi ϕ

(

pi

qi

)

.For example, we 
an de�ne the absolute andthe quadrati
 divergen
e as
Ab(p, q) =

∑ |pi−qi|
qi

, for ϕ(t) = |t − 1|; and
χ2(p, q) =

∑ (pi−qi)
2

qi

, for ϕ(t) = (t − 1)2.5. Final RemarksThe obje
tions raised by Spen
er-Brown againstprobability and statisti
s, analyzed in se
tions 1and 2, are somewhat simplisti
 and stereotypi
al,possibly explaining why they had little in�uen
eoutside a small 
ir
le of admirers, most of themrelated to the radi
al 
onstru
tivism movement.However, arguments very similar to those usedto demystify Spen
er-Brown's mis
on
eptions andelu
idate its misunderstandings, reappear in moresubtle or abstra
t forms in the analysis of far morete
hni
al matters like, for example, the use andinterpretation of prior and posterior distributionsin Bayesian statisti
s.In this arti
le, entropy is presented as a
ornerstone 
on
ept for the pre
ise analysis anda key idea for the 
orre
t understanding of severalimportant topi
s in probability and statisti
s. Thisunderstanding should help to 
lear the way forestablishing Bayesian statisti
s as a preferred tollfor s
ienti�
 inferen
e in mainstream 
ognitive
onstru
tivism. CC: Creative Commons Li
ense, 2003
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