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(Colla and Stern, 2008).The use of randomization in Statistis isan original idea of Charles Saunders Peireand Joseph Jastrow, see (Peire and Jastrow,1884) and (Haking, 1988). Randomization isnow a standard requirement for many sienti�studies. In (Stern 2007b, 2008a) I onsider theposition of C.S.Peire as a forerunner of ognitiveonstrutivism, based on the importane,relevane and oherene of his philosophial andsienti� work. Among his several ontributions,the introdution of randomization in statistialdesign stands indubitably out. In future artiles,I hope to further expand the analysis of the roleof Bayesian Statistis in ognitive onstrutivismand provide other interesting appliations. I shallherein analyze some objetions to the onepts ofprobability, statistis and randomization posed byGeorge Spener-Brown, a �gure of great in�uenein the �eld of radial onstrutivism.In what follows, setion 2 orresponds to the�rst part of this artile's title and elaborates upon�the ase of Spener-Brown vs. probability andstatistis�. Corresponding to the seond part ofthe title, setion 3 provides the �the testimonyof entropy on subjetive randomness�. Setion4 o�ers an objetive perspetive on randomness,CC: Creative Commons Liense, 2003



2 Author J.M.Sternthrough an entropy based informational analysis.Setion 5 presents our �nal onlusions.2. The Case of Spener-Brown AgainstProbability and StatistisIn (Spener-Brown, 1953a, 1953b, 1957),Spener-Brown analyzed some apparent paradoxesinvolving the onept of randomness, andonluded that the language of probability andstatistis was inappropriate for the pratieof sienti� inferene. In subsequent work,(Spener-Brown, 1969), he reformulates lassiallogi using only a generalized nor operator(marked not-or, unmarked or), that he representsà la mode of Charles Saunders Peire or JohnVenn, by a graphial boundary or distintionmark, see (Carnielli, 2009), (Edwards, 2004),(Kau�mann, 2001, 2006), (Meguire, 2003),(Peire, 1880) and (She�er, 1913).Making (or arbitrating) distintions is,aording to Spener-Brown, the basi (if not theonly) operation of human knowledge, an idea thathas either in�uened or been diretly exploredby several authors in the radial onstrutivistmovement. The following quotations, from(Spener-Brown, 1957, p.23,p.66,p.105), aretypial arguments used by Spener-Brown in hisrejetion of probability and statistis:�Retroative relassi�ation of observations inone of the sientist's most important tools, andwe shall meet it again when we onsider statisti-al arguments.��We have found so far that the onept of prob-ability used in statistial siene is meaninglessin its own terms; but we have found also that,however meaningful it might have been, its mean-ingfulness would nevertheless have remained fruit-less beause of the impossibility of gaining infor-mation from experimental results, however signif-iant. This �nal paradox, in some ways the mostbeautiful, I shall all the Experimental Paradox.��The essene of randomness has been taken tobe absene of pattern. But what has not hith-erto been faed is that the absene of one patternlogially demands the presene of another. It isa mathematial ontradition to say that a serieshas no pattern; the most we an say is that ithas no pattern that anyone is likely to look for.The onept of randomness bears meaning only inrelation to the observer: If two observers habit-ually look for di�erent kinds of pattern they arebound to disagree upon the series whih they all

random.�Several authors onur, at least in part, with myopinion about Spener-Brown's tehnial analysisof probability and statistis, see (Flew, 1959),(Falk and Konold, 2005), (Good, 1958)a and(Mundle, 1959). In Setion 3, I arefully explainwhy I disagree with it. In some of my arguments,whih are are based on information theory and thenotion of entropy, I dissent from Spener-Brown'sinterpretation of measures of order-disorder insequential signals. In (Atkins 1984), (Attneave,1959), (Dugdale, 1996), (Krippendor�, 1986) and(Tarasov, 1988) some of the basi onepts in thisarea are reviewed with a minimum of mathematis.I also disapprove some of Spener Brown'sproposed methodologies to detet �relevant�event sequenes, that is, his riteria to �markdistint patterns� in empirial observations. Myobjetions have a lot in ommon with thestandard aveats against ex post fato ��shingexpeditions� for interesting outomes, or simplepost ho �sub-group analysis� in experimental databanks. This kind of retroative or retrospetivedata analyses is onsidered a questionablestatistial pratie, and pointed as the ulprit ofmany misoneived studies, misleading argumentsand mistaken onlusions. The literature onstatistial methodology for linial trials has beenpartiularly keen in warning against this kind ofpratie. See (Tribble, 2008) and (Wang etal., 2007) for two interesting papers addressingthis spei� issue and published in high impatmediine journals less than a year before I wrotethis text. When onsulting for pharmaeutialompanies or advising in the design of statistialexperiments, I often �nd it useful to quote ConanDoyle's Sherlok Holmes, in The Adventure ofWisteria Lodge:�Still, it is an error to argue in front of yourdata. You �nd yourself insensibly twisting themaround to �t your theories.�Finally, I am also suspiious or skeptialabout the intension behind some appliationsof Spener-Brown's researh program, inludingthe use of extrasensory empathi pereptionfor oded message ommuniation, exerises onobjet manipulation using paranormal powers, et.Unable to reonile his psyhi researh programwith statistial siene, Spener-Brown had noregrets in disqualifying the later, as he learlystated in the prestigious sienti� journal Nature,see (Spener-Brown, 1953b,p.594):[On telepathy:℄ �Taking the psyhial researhCC: Creative Commons Liense, 2003



tripleC 1(1): 1-10, 2003 3data (that is, the residuum when fraud and in-ompetene are exluded), I tried to show thatthese now threw more doubt upon existing pre-suppositions in the theory of probability than inthe theory of ommuniation.�[On psyhokinesis:℄ �If suh an `ageny' ouldthus `upset' a proess of randomizing, then all ouronlusions drawn through the statistial tests ofsigni�ane would be equally a�eted, inludingthe onlusions about the `psyhokinesis' exper-iments themselves. (How are the target num-bers for the die throws to be randomly hosen?By more die throws?) To speak of an `ageny'whih an `upset' any proess of randomizationin an unontrollable manner is logially equivalentto speaking of an inadequay in the theoretialmodel for empirial randomness, like the luminifer-ous ether of an earlier ontroversy, beomes, withthe obsolesene of the alulus in whih it ours,a super�uous term.�Spener-Brown's onlusions, inluding hisanalysis of probability, were onsidered to beontroversial (if not unreasonable or extravagant)even by his own olleagues at the Soiety ofPsyhial Researh, see (Sott, 1958), (Soal etal., 1958). It seems that urrent researh in thisarea, even not being free (or afraid) of ritiism,has abandoned the path of naïve onfrontationwith statistial siene, see (Atmanspaher, 2005)and (Ehm, 2005). For additional omments, see(Henning, 2006), (Kapthuk and Kerr, 2004),(Utts, 1991), and (Wassermann, 1955).Curiously, Charles Saunders Peire and hisstudent Joseph Jastrow, who introdued the ideaof randomization in statistial trials, also struggledwith some of the very same dilemmas faed bySpener-Brown, namely, the eventual detetion ofdistint patterns or seemingly ordered (sub)stringsin a long random sequene. Peire and Jastrow didnot have at their disposal the heavy mathematialartillery I have quoted in the previous paragraphs.Nevertheless, as experiened explorers that are noteasily lured, when traveling in desert sands, bythe mirage of a misplaed oasis, these intrepidpioneers were able to avoid the oneptual pitfallsthat lead Spener-Brown so far astray. Formore details see (Stern, 2008a), (Haking, 1988),(Peire and Jastrow, 1884) and (Bonassi et al.,2008, 2009) and (Dehue, 1997).As stated in the introdution, the ognitiveonstrutivist framework an be supported bythe FBST, a non-deision theoreti formalismdrawn from Bayesian statistis. The FBST

was oneived as a tool for validating objetiveknowledge of eigen-solutions and, as suh, an beeasily integrated to the epistemologial frameworkof ognitive onstrutivism in sienti� researhpratie. Contrasting our distint views ofognitive onstrutivism, it is not at all surprisingthat I have ome to onlusions onerningthe use of probability and statistis, and alsoto the relation between probability and logi,that are fundamentally di�erent from those ofSpener-Brown.3. Pseudo, Quasi and SubjetiveRandomnessThe fous of the present setion are the propertiesof �natural� and �arti�ial� random sequenes.The implementation of probabilisti algorithmsrequire good random number generators, (RNGs).These algorithms inlude: numerial integrationmethods suh as Monte Carlo or Markov ChainMonte Carlo (MCMC); evolutionary omputingand stohasti optimization methods suh asgeneti programming and simulated annealing;and also, of ourse, the e�ient implementationof randomization methods.The most basi random number generatorrepliates i.i.d. (independent and identiallydistributed) random variables uniformlydistributed in the unit interval, [0, 1[. Fromthis basi uniform generator one gets a uniformgenerator in the d-dimensional unit box, [0, 1[d,and, from the later, non-linear generators for manyother multivariate distributions, see (Hammersleyand Handsomb, 1964) and (Ripley, 1987).Historially, the tehnology of random numbergenerators was developed in the ontext ofMonte Carlo methods. The nature of MonteCarlo algorithms makes them very sensitive toorrelations, auto-orrelations and other statistialproperties of the random number generator usedin its implementation. Hene, in this ontext, thestatistial properties of �natural� and �arti�ial�random sequenes ame to lose srutiny. Forthe aforementioned historial and tehnologialreasons, Monte Carlo methods are frequently usedas a benhmark for testing the properties ofthese generators. Hene, although Monte Carlomethods proper lie outside the sope of this artile,we shall keep them as a standard appliationbenhmark in our disussions.The lever ideas and also the aveats ofengineering good random number generatorsCC: Creative Commons Liense, 2003



4 Author J.M.Sternare in the ore of many paradoxes found bySpener-Brown. The objetive of this setion isto explain the basi ideas behind these generatorsand, in so doing, avoid the oneptual traps andpitfalls that took Spener-Brown analyses so muho� ourse.3.1. Random Number GeneratorsThe onept of randomness is usually appliedto a variable or a proess (to be generatedor observed) involving some unertainty. Thefollowing de�nition is presented at (Hammersleyand Handsomb, 1964,p.10):�A random event is an event whih has a haneof happening, and probability is a numerial mea-sure of that hane.�Monte Carlo, and several other probabilistialgorithms, require a random number generator.With the last de�nition in mind, engineeringdevies based on sophistiated physial proesseshave been built in the hope of o�ering a soure of�true� random numbers. However, these speialdevies were umbersome, expensive, not portablenor universally available, and often unreliable.Moreover, pratitioners soon realized that simpledeterministi sequenes ould suessfully beused to emulate a random generator, as statedin the following quotes (our emphasis) at(Hammersley and Handsomb, 1964,p.26) and(Ripley, 1987,p.15):�For eletroni digital omputer it is most on-venient to alulate a sequene of numbers oneat a time as required, by a ompletely spei�edrule whih is, however, so devised that no rea-sonable statistial test will detet any signi�antdeparture from randomness. Suh a sequene isalled pseudorandom. The great advantage of aspei�ed rule is that the sequene an be exatlyreprodued for purposes of omputational hek-ing.��A sequene of pseudorandom numbers (Ui) isa deterministi sequene of numbers in [0, 1] hav-ing the same relevant statistial properties as asequene of random numbers.�Many deterministi random emulators usedtoday are Linear Congruential Pseudo-RandomGenerators (LCPRG), as in the following example:
xi+1 = (axi + c)modm ,where the multiplier a, the inrement c and themodulus m should obey the onditions: (i) c and

m are relatively prime; (ii) a− 1 is divisible by all

prime fators of m; (iii) a− 1 is a multiple of 4 if
m is a multiple of 4. LCPRG's are fast and easy toimplement if m is taken as the omputer's wordrange, 2s, where s is the omputer's word size,typially s = 32 or s = 64. The LCPRG's startingpoint, x0, is alled the seed. Given the same seedthe LCPG will reprodue the same sequene, avery onvenient feature for traing, debugging andverifying appliation programs.However, LCPRG's are not an universalsolution. For example, it is trivial todevise some statistis that will be far fromrandom, see (Marsaglia, 1968). There theimportane of the words reasonable and rele-vant in the last quotations beomes lear: Formost pratial appliations these statistis areirrelevant. LCPRG's an also exhibit very longrange auto-orrelations and, unfortunately, theseare more likely to a�et long simulated timeseries required in some speial appliations. Theomposition of several LCPRG's by periodi seedrefresh may mitigate some of these di�ulties, see(Ripley 1987). LCPRG's are also not appropriateto some speial appliations in ryptography, see(Boyar, 1989). Current state of the art generatorsare given in (Matsumoto et al., 1992, 1998).3.2. Chane is Lumpy - Randomand Quasi-Random Generators�Chane is Lumpy� is Robert Abelson's First Lawof Statistis, stated in (Abelson, 1995,p.xv).The probabilisti expetation is a linearoperator, that is, E(Ax + b) = AE(x) + b, where
x in random vetor and A and b are a determinedmatrix and vetor. The Covariane operator isde�ned as Cov(x) = E((x−E(x))⊗ (x−E(x))).Hene, Cov(Ax + b) = ACov(x)A′. Therefore,given n i.i.d. salar variables, xi |Var(xi) = σ2,the variane of their mean, m = (1/n)1′x, is givenby σ2/n. So, in this ase, the mean value onvergeto the expeted value at a rate of 1/

√

(n).Quasi-random sequenes are deterministisequenes built not to emulate random sequenes,as pseudo-random sequenes do, but to ahievefaster onvergene rates. For d-dimensionalquasi-random sequenes, an appropriate measureof �utuation, alled disrepany, only growsat a rate of log(n)d, hene growing muhslower than √

(n). Therefore, the onvergenerate orresponding to quasi-random sequenes,
log(n)d/n, is muh faster than the oneorresponding to (pseudo) random sequenes,CC: Creative Commons Liense, 2003
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√

(n)/n. Figure 1 allows the visual omparison oftypial (pseudo) random (left) and quasi-random(right) sequenes in [0, 1[2. By visual inspetionwe see that the points of the quasi-randomsequene are more �homogeneously sattered�that is, they do not �lump together�, as the pointof the (pseudo) random sequene often do.Let us onsider an axis-parallel retangles in theunit box,
R = [a1, b1[× [a2, b2[× . . . [ad, bd[ ⊆ [0, 1[d .The disrepany of the sequene s1:n in box R,and the overall disrepany of the sequene arede�ned as

D(s1:n, R) = nVol(R) − |s1:n ∩ R| ,

D(s1:n) = supR∈[0,1[d |D(s1:n, R)| .It is possible to prove that the disrepany of theHalton-Hammersley sequene, de�ned next, is oforder O(log(n)d−1), see (Matousek, 1991, h.2).Halton-Hammersley sets: Given d − 1 distintprime numbers, p(1), p(2), . . . p(d − 1), the
i-th point, xi, in the Halton-Hammersley set,
{x1, x2, . . . xn}, is for i = 1 : n − 1,

i = a0 + p(k)a1 + p(k)2a2 + p(k)3a3 + . . . ,

rp(k)(1) =
a0

p(k)
+

a1

p(k)2
+

a2

p(k)3
+ . . . .

xi =
[

i/n, rp(1)(i), rp(2)(i), . . . rp(d−1)(i)
]′

,That is, the (k + 1)-th oordinate of xi, xi
k+1 =

rp(k)(i), is obtained by the bit (or digit) reversalof i written in p(k)-ary or base p(k) notation.The Halton-Hammersley set is a generalizationof van der Corput set, built in the bidimensionalunit square, d = 2, using the �rst primenumber, p = 2. The following example, from(Hammersley and Handsomb, 1964,p.33) and(Guenther, 2003,p.117), builds the 8-point vander Corput set, expressed in binary and deimalnotation.funtion x= orput(n,b)% size n base b v.d.orput setm=floor(log(n)/log(b));u=1:n; D=[℄;for i=0:md= rem(u,b);u= (u-d)/b;D= [D; d℄;endx=((1./b').^(1:(m\ma1)))*D;

Deimal Binary
i r2(i) i r2(i)1 0.5 1 0.12 0.21 10 0.013 0.75 11 0.114 0.125 100 0.0015 0.625 101 0.1016 0.375 110 0.0117 0.875 111 0.1118 0.0625 1000 0.0001

Figure 1: Pseudo/quasi-random point setsQuasi-random sequenes, also known aslow-disrepany sequenes, an substitutepseudo-random sequenes in some appliations ofMonte Carlo methods, ahieving higher auraywith less omputational e�ort, see (Merkel,2005), (Okten, 1999) and (Sen et al., 2006).Nevertheless, sine by design the points of aquasi-random sequene tend to avoid eah other,strong (negative) orrelations are expeted toappear. In this way, the very reason that an makequasi-random sequenes so helpful, an ultimatelyimpose some limits to their appliability. Someof these problems are ommented in (Moroko�,1998,p.766):�First, quasi-Monte Carlo methods are valid forintegration problems, but may not be diretly ap-pliable to simulations, due to the orrelations be-tween the points of a quasi-random sequene. ...A seond limitation: the improved auray ofquasi-Monte Carlo methods is generally lost forproblems of high dimension or problems in whihthe integrand is not smooth.�3.3. Subjetive Randomness ParadoxesWhen asked to look at patterns like those in Figure1, many subjets pereive the quasi-random setas �more random� than the (pseudo) random set.How an this paradox be explained? This was thetopi of many psyhologial studies in the �eld ofsubjetive randomness. The quotation in the nextparagraph is from one of these studies, (Falk andKonold, 1997,p.306), emphasis are ours:CC: Creative Commons Liense, 2003



6 Author J.M.Stern�One major soure of onfusion is the fat thatrandomness involves two distint ideas: proessand pattern, (Zabell, 1992). It is natural tothink of randomness as a proess that generatesunpreditable outomes, this is a stohasti pro-ess aording to (GellMann, 1994). Random-ness of a proess refers to the unpreditabilityof the individual event in the series (Lopes, 1982,1987). This is what Spener Brown 9Spener-Brown, 1957) alls primary randomness. How-ever, one usually determines the randomness ofthe proess by means of its output, whih is sup-posed to be patternless. This kind of randomnessrefers, by de�nition, to a sequene. It is labeledseondary randomness by Spener Brown. It re-quires that all symbol types, as well as all orderedpairs (diagrams), ordered triplets (trigrams)... n-grams in the sequene be equiprobable. This def-inition ould be valid for any n only in in�nitesequenes, and it may be approximated in �nitesequenes only up to ns muh smaller than thesequene's length. The entropy measure of ran-domness is based on this de�nition, see h.1 and2 of (Attneave, 1959).These two aspets of randomness are loselyrelated. We ordinarily expet outomes generatedby a random proess to be patternless. Most ofthem are. Conversely, a sequene whose order israndom supports the hypothesis that it was gener-ated by a random mehanism, whereas sequeneswhose order is not random ast doubt on the ran-dom nature of the generating proess.�Spener-Brown was intrigued by the apparentinompatibility of the notions of primary andseondary randomness. The apparent ollisionof these two notions generates several interestingparadoxes, taking Spener-Brown to question theappliability of the onept of randomness inpartiular and probability and statistial analysis ingeneral, see (Spener-Brown, 1953a, 1953b, 1957)and also (Flew, 1959), (Good, 1958), (Mundle,1959), (Henning, 2006), (Kapthuk, 2004), (Utts,1991), (Wassermann, 1955) and (Tversky, 1971).In fat, several subsequent psyhologial studieswere able to on�rm that, for many subjets, theintuitive or ommon-sense pereption of primaryand seondary randomness are quite disrepant.However, a areful mathematial analysis anreonile the two notions of randomness. Thesetopis are disussed in this setion.The relation between the joint and onditionalentropy for a pair of random variables,
H(i, j) = H(j) + H(i | j) = H(i) + H(j | i) ,

motivates the de�nition of �rst, seond and higherorder entropies, see setion 4. These are de�nedover the distribution of words of size m in a stringof letters from an alphabet of size a.
H1 =

∑

j
p(j) log p(j) ,

H2 =
∑

i,j
p(i)p(j | i) log p(j | i) ,

H3 =
∑

i,j,k
p(i)p(j | i)p(k | i, j) log p(k | i, j) . . .It is possible to use these entropy measures toassess the disorder or lak of pattern in a given�nite sequene, using the empirial probabilitydistributions of single letters, pairs, triplets, et.However, in order to have a signi�ant empirialdistribution of m-plets, any possible m-plet mustbe well represented in the sequene, that is, theword size, m, is required to be very short relativeto the sequene log-size, that is, m << loga(n).

Figure 2: Pixel alternation - H2-entropy, ENvs. apparent randomness, AR.In the artile (Falk and Konold, 1997), Figure2 displays the typial pereived or apparentrandomness of Boolean (0-1) bit sequenes,represented as blak-and-white pixel grids, versusthe seond order entropy of the same strings,see also (Attneave, 1959). Clearly, there isa remarkable bias of the apparent randomnessrelative to the entropi measure.This e�et is known as the gambler's fal-lay when betting on ool spots. It onsists ofexpeting the random sequene to �ompensate��nite average �utuations from expeted values.This e�et is also desribed in (Falk and Konold,1997,p.303): � When people invent super�uousexplanations beause they pereive patterns inrandom phenomena, they ommit what is knownin statistial parlane as Type I error. The otherway of going awry, known as Type H error, ourswhen one dismisses stimuli showing some regu-larity as random. The numerous randomizationstudies in whih partiipants generated too manyCC: Creative Commons Liense, 2003



tripleC 1(1): 1-10, 2003 7alternations and viewed this output as random, aswell as the judgments of overalternating sets asmaximally random in the pereption studies, wereall instanes of type II error in researh results.�Of ourse, some gamblers exhibit the oppositebehavior, preferring to bet on hot spots, expetingthe same �utuations to reour. These e�etsare the onsequene of a pereived oupling, by anegative or positive orrelation or other measureof assoiation, between non overlapping segmentsthat are in fat supposed to be deoupled,unorrelated or have no assoiation, that is,to be independent. For a statistial analysis,see (Bonassi et al., 2008, 2009). A possiblepsyhologial explanation of the gambler's fallayis given by the onstrutivist theory of JeanPiaget, see (Piaget, 1951), (Falk and Konold,1997,p.316 in whih any �lump� in the sequeneis (miss) pereived as non-random order:�In analogy to Piaget's operations, whih areoneived as internalized ations, pereived ran-domness might emerge from hypothetial ation,that is, from a thought experiment in whih onedesribes, predits, or abbreviates the sequene.The harder the task in suh a thought experiment,the more random the sequene is judged to be.�The same hierarhial deomposition shemeused for higher order onditional entropy measuresan be adapted to measure the disorder orpatternless of a sequene, relative to a givensubjet's model of �omputer� or generationmehanism. In the ase of a disretestring, this generation model ould be, forexample, a deterministi or probabilisti Turingmahine, a �xed or variable length Markovhain, et. It is assumed that the modelis regulated by a ode, program or vetorparameter, θ, and outputs a data vetor orobserved string, x. The hierarhial omplexitymeasure of suh a model emulates the Bayesianprior and onditional likelihood deomposition,
H(p(θ, x)) = H(p(θ)) + H(p(x | θ)), that is, thetotal omplexity is given by the omplexity of theprogram plus the omplexity of the output giventhe program. This is the starting point for severalomplexity models, like Andrey Kolmogorov, RaySolomono� and Gregory Chaitin's omputationalomlexity models, Jorma Rissanen's MinimumDesription Length (MDL), and Chris Wallaeand David Boulton's Minimum Message Length(MML). All these alternative omplexity modelsan also be used to suessfully reonile thenotions of primary and seondary randomness,

showing that they are asymptotially equivalent,see (Chaitin, 1975, 1988), (Ka, 1983), (Kapur,1989), (Rissanen, 1989) and (Wallae, 2005).4. Entropy and Some GeneralizationsEntropy is the ornerstone onept of thepreeding setion, used as a entral idea in theunderstanding of order and disorder in stohastiproesses. Entropy is the key that allowed usto unlok the mysteries and solve the paradoxesof subjetive randomness, making it possibleto reonile the notions of unpreditability ofstohasti proess and patternless of randomlygenerated sequenes. Similar entropy basedarguments reappear, in more abstrat, subtleor intriate forms, in the analysis of tehnialaspets of Bayesian statistis like, for example,the use of prior and posterior distributions and theinterpretation of their informational ontent. Thissetion gives a short review overing the de�nitionof entropy, its main properties, and some of itsmost important uses in mathematial statistis.The origins of the entropy onept lay in the�elds of Thermodynamis and Statistial Physis,but its appliations have extended far and wideto many other phenomena, physial or not. Theentropy of a probability distribution, H(p(x)), isa measure of unertainty (or impurity, onfusion)in a system whose states, x ∈ X , have p(x)as probability distribution. We follow losely thepresentation in the following referenes. For thebasi onepts, see (Dugdale, 1996), (Csiszar,1974), (Khinhin, 1953) and (Renyi, 1961, 1970).4.1. Boltzmann-Gibbs-Shannon EntropyIf H(p(x)) is to be a measure of unertainty, itis reasonable that it should satisfy the followinglist of requirements. For the sake of simpliity, wepresent the theory in �nite spaes.1) If the system has n possible states,
x1, . . . xn, the entropy of the system with a givendistribution, pi ≡ p(xi), is a funtion H suh that
H = Hn(p1, . . . , pn).2) H is a ontinuous funtion.3) H is a funtion symmetri in its arguments.4) The entropy is unhanged if an impossiblestate is added to the system, that is,
Hn(p1, . . . pn) = Hn+1(p1, . . . pn, 0).5) The system's entropy is minimal and nullwhen the system is fully determined, that is,
Hn(0, . . . , 0, 1, 0, . . .0) = 0.CC: Creative Commons Liense, 2003



8 Author J.M.Stern6) The entropy is maximal when all states areequally probable, that is, { 1
n
1 } = argmax Hn.7) Maximal entropy inreases with the numberof states, i.e., Hn+1

(

1
n+11) > Hn

(

1
n
1) .8) Entropy is an extensive quantity, i.e., giventwo independent systems, with distributions p e q,the entropy of the omposite system is additive,i.e., Hnm(r) = Hn(p) + Hm(q), ri,j = pi qj .The Boltzmann-Gibbs-Shannon measure ofentropy, Hn(p) = −In(p) = −

∑n

i=1 pi log(pi) =
−Ei log(pi) , 0 log(0) ≡ 0 , satis�es requirements(1) to (8), and is the most usual measure ofentropy. In Physis it is usual to take the logarithmin Napier base, while in Computer Siene it isusual to take base 2 and in Engineering it is usualto take base 10. The opposite of the entropy,
I(p) = −H(p), the Neguentropy, is a measure ofInformation available about the system.For the Boltzmann-Gibbs-Shannon entropywe an extend requirement 8, and omputethe omposite Neguentopy even withoutindependene. Writing qi

j = Pr(j | i), we get,
Inm(r) = In(p) +

∑n

i=1
pi Im(qi) .If we add this last identity as item number9 in the former list of requirements, we havea haraterization of Boltzmann-Gibbs-Shannonentropy, see (Khinhin, 1953), (Renyi, 1970).Like many important onepts, this measure ofentropy was disovered and re-disovered severaltimes in di�erent ontexts, and sometimes theuniqueness and identity of the onept was notimmediately reognized. A well known anedoterefers the answer given by von Neumann, afterShannon asked him how to all a �newly�disovered onept in Information Theory. Asreported by Shannon in (Tribus, 1971,p.180):�My greatest onern was what to all it. Ithought of alling it information, but the wordwas overly used, so I deided to all it unertainty.When I disussed it with John von Neumann, hehad a better idea. Von Neumann told me, Youshould all it entropy, for two reasons. In the �rstplae your unertainty funtion has been used instatistial mehanis under that name, so it al-ready has a name. In the seond plae, and moreimportant, nobody knows what entropy really is,so in a debate you will always have the advantage.�4.2. Csiszar's DivergeneIn order to hek that requirement (6) is satis�ed,we an use (with q ∝ 1) the following lemma:

Lemma: Shannon InequalityIf p and q are two distributions over a system with
n possible states, and qi 6= 0, then the Informationof p Relative to q, In(p, q), is positive, exept if
p = q, when it is null,Proof: If ϕ is a onvex funtion, Jenseninequality holds, E (ϕ(x)) ≥ ϕ (E(X)) . Taking
ϕ(t) = t ln(t) and ti = pi/qi, we get Eq (t) = 1,and In(p, q) =

∑

qiti log ti ≥ 1 log(1) = 0.Shannon's inequality motivates the use ofthe Relative Information as a measure of(non symmetri) �distane� between distributions.In Statistis this measure is known as theKullbak-Leibler distane. The denominationsDireted Divergene or Cross Information areused in Engineering. The proof of Shannoninequality motivates the following generalizationof divergene:De�nition: Csiszar's ϕ-divergene.Given a onvex funtion ϕ, where 0ϕ(0/0) = 0and 0ϕ(c/0) = c limt→∞ ϕ(t)/t,
dϕ(p, q) =

∑n

i=1
qi ϕ

(

pi

qi

)

.For example, we an de�ne the absolute andthe quadrati divergene as
Ab(p, q) =

∑ |pi−qi|
qi

, for ϕ(t) = |t − 1|; and
χ2(p, q) =

∑ (pi−qi)
2

qi

, for ϕ(t) = (t − 1)2.5. Final RemarksThe objetions raised by Spener-Brown againstprobability and statistis, analyzed in setions 1and 2, are somewhat simplisti and stereotypial,possibly explaining why they had little in�ueneoutside a small irle of admirers, most of themrelated to the radial onstrutivism movement.However, arguments very similar to those usedto demystify Spener-Brown's misoneptions andeluidate its misunderstandings, reappear in moresubtle or abstrat forms in the analysis of far moretehnial matters like, for example, the use andinterpretation of prior and posterior distributionsin Bayesian statistis.In this artile, entropy is presented as aornerstone onept for the preise analysis anda key idea for the orret understanding of severalimportant topis in probability and statistis. Thisunderstanding should help to lear the way forestablishing Bayesian statistis as a preferred tollfor sienti� inferene in mainstream ognitiveonstrutivism. CC: Creative Commons Liense, 2003
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