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Abstract: The aim of this study is to model shapes from complex systems using Information
Geometry tools. It is well-known that the Fisher information endows the statistical manifold,
defined by a family of probability distributions, with a Riemannian metric, called the Fisher–Rao
metric. With respect to this, geodesic paths are determined, minimizing information in Fisher sense.
Under the hypothesis that it is possible to extract from the shape a finite number of representing
points, called landmarks, we propose to model each of them with a probability distribution, as for
example a multivariate Gaussian distribution. Then using the geodesic distance, induced by the
Fisher–Rao metric, we can define a shape metric which enables us to quantify differences between
shapes. The discriminative power of the proposed shape metric is tested performing a cluster
analysis on the shapes of three different groups of specimens corresponding to three species of
flatfish. Results show a better ability in recovering the true cluster structure with respect to other
existing shape distances.
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1. Introduction

Shape analysis is a timely and interesting research field. Applications of shape analysis have
been involved in various areas such as morphometry, image analysis, biology, database retrieval,
and so on. In all these fields the aim could be to get an unsupervised classification of the
objects in different clusters such that objects within a group are more similar in terms of shapes
than they are in other groups. Then, the clustering of shapes is a longstanding challenge in the
framework of geometric morphometrics [1], since the recognition of groups of similar morphologies,
and then of the differences among these groups, is a key step of the analysis when geometric
morphometrics protocols are applied. Shapes must be invariant to rotation, scale and translation
so that a straightforward way to proceed is first to align the objects by using Procrustes analysis and
then to apply standard clustering algorithms minimizing a given distance or dissimilarity measure
evaluated within each cluster [2,3]. Similarly, [4] proposed to use a dissimilarity measure based
on the inter-landmark distances and then apply standard statistical procedures such as hierarchical
clustering or k-means clustering.

Under the hypothesis that it is possible to extract from the shape a finite number of
representing points, called landmarks, we propose new statistical modeling of 2-dimensional shapes
by representing each landmark by a bivariate Gaussian random variable. The means and the
variances parameters becomes the coordinates of the statistical manifold. In particular, the variances
reflect the uncertainty in the landmark’s placement and the variability across a family of shapes.
Within this framework , we derive a distance between two shapes using tools from Information
Geometry [5,6], which considers statistical models as Riemannian manifolds with the Fisher–Rao
metric. However, the associated geodesic distance has not yet been derived for the family of general
multivariate normal distributions. Closed form expressions have been obtained only for isotropic and
diagonal Gaussian distributions [7].

The paper is organized as follows: Section 2 recalls the main notions of Information Geometry.
Section 3 reviews the statistical modeling of 2-dimensional shapes provided by Information
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Geometry. In Section 4, a new shape distance derived from the Fisher–Rao metric is proposed. Its
discriminative power is evaluated through a real application.

2. Information Geometry

Let I = [0, 1] and P a k-dimensional family of positive probability density functions

p : I × Rk → R+

(x, θ) 7→ p(x, θ), parametrized by θ ∈ Rk. In classical Information Geometry, the Fisher information
matrix g, with generic (i, j) - entry

gij(θ) =
∫ 1

0
p(x/θ)

∂

∂θi log p(x/θ)
∂

∂θ j log p(x/θ)dx. (1)

is regarded as the most natural Riemannian structure on the parameter space [5,6].
From differential geometry we know that a metric matrix g defines an inner product on the

tangent space of the manifold as follows: 〈u, v〉 = uT gijv with associated norm ‖u‖ =
√
〈u, u〉.

Then the distance between two points P, Q of the manifold is given by the minimum of the
lengths of all the piecewise smooth paths γ joining these two points. Precisely the length of a path is
calculated by using the inner product:

Length of γ =
∫

γ
‖γ′(t)‖dt

and so

d(P, Q) = minγ{Length ofγ}.

A curve that encompasses this shortest path is called a geodesic. In particular we consider the
family of p-variate normal distributions:

p(x, µ, Σ) = (2π)
−p
2 (det Σ)

−1
2 exp(

−1
2

(x− µ)TΣ−1(x− µ))

where x = (x1, x2, ..., xp)T , µ = (µ1, µ2, µp)T is the mean vector and Σ the covariance matrix. Note

that the parameter space has dimension k = p + p(p+1)
2 . We have three sub-cases [7]:

(i) Round Gaussian distributions: Σ = σ2 I
In this case the family can identified with the (p + 1)-dimensional half space parameterized by

(µ1, µ2, ..., µp, σ), σ > 0, and the Fisher information matrix is:

g(µ1, µ2, ..., µp, σ) =


1

σ2 0 . . . 0 0
0 1

σ2 . . . 0 0
0 0 . . . 0 0
0 0 . . . 1

σ2 0
0 0 . . . 0 2p

σ2


Using a similarity transformation with the following matrix of the hyperbolic metric in the

(p + 1)-dimensional half space

g(µ1, µ2, ..., µp, σ) =


1

σ2 0 . . . 0 0
0 1

σ2 . . . 0 0
0 0 . . . 0 0
0 0 . . . 1

σ2 0
0 0 . . . 0 1

σ2


the closed form for the distance is given by
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d((µ̄1, σ1), (µ̄2, σ2)) =

√
2p ln

|( µ̄1√
2p

, σ1)− ( µ̄2√
2p

,−σ2)|+ |( µ̄1√
2p

, σ1)− ( µ̄2√
2p

, σ2)|

|( µ̄1√
2p

, σ1)− ( µ̄2√
2p

,−σ2)| − |( µ̄1√
2p

, σ1)− ( µ̄2√
2p

, σ2)|
(2)

where (µ̄1, σ1) = ((µ11, ..., µ1p, σ1) and (µ̄2, σ2) = ((µ21, ..., µ2p, σ2) besides |.| is the usual Euclidean
norm. The geodesics in the parameter space are contained in planes orthogonal to the hyperplane
σ = 0 and are either lines or half ellipses centered at this hyperplane. The curvature of the family is
equal to −1

p(p+1) .

(ii) Diagonal Gaussian distributions: Σ = diag(σ2
1 , σ2

2 , ..., σ2
p)

The family of all independent multivariate normal distributions is the intersection of half-spaces
parameterized by (µ1, σ1, µ2, σ2, ..., µp, σp), σi > 0, so the Fisher information matrix is:

g((µ1, σ1, µ2, σ2, ..., µp, σp) =



1
σ2

1
0 . . . 0 0

0 2
σ2

1
. . . 0 0

0 0 . . . 0 0
0 0 . . . 1

σ2
p

0

0 0 . . . 0 2
σ2

p


.

In this case the metric is a product metric, the curvature of the family is −1
2(2p−1) , and, using again

the similarity with the hyperbolic metric, we have the following closed form for the distance

d((µ11, σ11, ..., µ1p, σ1p), (µ21, σ21, ..., µ2p, σ2p)) =√√√√√2
p

∑
i=1

(
ln
|( µ1i√

2
, σ1i)− ( µ2i√

2
,−σ2i)|+ |(

µ1i√
2
, σ1i)− ( µ2i√

2
, σ2i)|

|( µ1i√
2

, σ1i)− ( µ2i√
2
,−σ2i)| − |(

µ1i√
2
, σ1i)− ( µ2i√

2
, σ2i)|

)2

(3)

(iii) General Gaussian distributions: Σ any symmetric positive definite covariance matrix
The analysis is much more difficult and it is not known a closed form for the associated distance.

3. Modeling of 2-Dimensional Shapes

We will consider only planar objects, as for example a section of the skull. The shape of the object
consists of all information invariant under similarity transformations, that is translations, rotations
and scaling [8]. Data from a shape are often realized as a set of points. Many methods allow us to
extract a finite number of points, which are representative of the shape and are called landmarks.
One way to compare shapes of different objects is to first register them on some common coordinate
system for removing the similarity transformations [9,10]. Alternatively, Procrustes methods [11]
may be used in which objects are scaled, rotated and translated so that their landmarks lie as close
as possible to each other. Suppose we have a sample of n planar shapes. Let us denote the shape
coordinates of the j-th configuration Sj, j = 1, ..., n, via its K landmarks µj =

{
µj1 , µj2 , . . . , µjK

}
with generic element µjk =

{
µjk1

, µjk2
,
}

for k = 1, . . . , K. For the k-th landmark an estimate of the
coordinates covariance matrix Σk is given by

Σk =
1
n

n

∑
j=1

vec(µjk − µ̄k)(vec(µjk − µ̄k))
T (4)

where µ̄k denotes the k-th landmark coordinates of the mean shape µ̄ = 1
n ∑n

j=1 µj and vec is the
vectorization operator.
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Our proposal is to model each landmark k, having shape coordinates µk = {µk1, µk2}, with a
bivariate Gaussian density. Assuming a round Gaussian distribution, case i) of section (2), we have
Σk = Σ = σ2I2 obtaining the following representation for the k-th landmark, for k = 1, . . . , K:

1
2πσ2 exp{−‖x− µk‖2

2σ2 } (5)

where x is a generic 2-dimensional vector. In the landmark representation (5), σ2 is a free parameter
isotropic across all the K landmarks. Therefore, only the means are used as coordinates of the
statistical manifold. We can relax the isotropic hypothesis assuming diagonal Gaussian distribution,
case ii) of section (2). To this end, the new model for the representation of the k-th-landmark, for
k = 1, . . . , K, is given by

1
2π |Σk|−

1
2 exp{− 1

2 (x− µk)
TΣ−1

k (x− µk)} (6)

where Σk = σ2
k I2 and σ2

k = {σ2
k1, σ2

k2} is the vector containing the variances of the k-th landmark
coordinates. Representation (6) allows us to express the k-th landmark coordinates as θk = (µk, σk) on
a 4-dimensional manifold which is the Cartesian product of two half-planes.

4. Shape Metrics Based on Geodesic Distance

The landmarks representation as probability distributions enables to perform various type
of analysis as for example quantifying the difference between shapes. Let S1 and S2 be two
planar shapes. Denote the length of the geodesic path connecting the k-th landmarks of the two
configurations by d(θS1

k , θS2
k ). A shape metric for measuring the difference between S1 and S2 can

be obtained evaluating the geodesic distances between the corresponding landmarks of the two
configurations as follows:

d(S1, S2) =
K

∑
k=1

d(θS1
k , θS2

k ). (7)

In Section 2 we provided closed form for the geodesic distance d(θS1
k , θS2

k ) according to the
type of landmarks representation adopted. Under the isotropic variance assumption - landmarks
representation (5) - the geodesic distance is computed with (2) while with the varying variance model
- landmarks representation (6) - the geodesic distance is computed with (3). In order to apply (3)
we need the covariance matrix in (6) to be diagonal. To this purpose we can apply an orthogonal
transformation to the original landmarks coordinates which does not affect the analysis because it
induces a rotation on the plane which leaves invariant the shape of a configuration.

The discriminative power of the proposed shape metrics is tested performing a cluster analysis
on the shapes of three different groups of specimens corresponding to three species of flatfish.
Namely, 60 individuals of plaice (Pleuronectes platessa L.) and 63 of flounder (Platichthys flesus L.) were
collected in North Bull Island [12]. In addition, a group of 14 individuals of the species S. solea were
used. These individuals were collected during the activities for the SOLEMON survey carried out
the in the Adriatic Sea (Mediterranean Sea) during the autumn 2014. This last group of individuals
would represent a kind of out-group with respect to the other two ones, since it belongs to a different
and phylogenetically distant family (Soleidae) [13]. Each fish was photographed in lateral aspect and
digital images were extensively described in [12]. In summary, the scheme of 21 landmarks described
in Figure 1 was digitized for each individual of the three species.
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Figure 1. Landmark configuration collected on (a) Platichthys flesus, (b) Pleuronectes platessa, and (c)
Solea solea. 1, snout tip; 2, 3 and 4, points of maximum curvature of the peduncle; 5, insertion of the
operculum on the lateral profile; 6, posterior extremity of premaxillar; 7 and 8, centres of the eyes; 9,
beginning of the lateral line; 10 and 11, superior and inferior insertion of the pectoral fin; 12-16, semi-
landmarks collected on dorsal fin; 17-20, semi-landmarks collected on anal fin; 21, insertion of first
ray of the pelvic fin.

Three different shape metrics are computed:

• shape metric under the varying variance model (6) (dG)
• shape metric under the fixed variance model (5) ( rG)
• Procrustes distance (PD)
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The Procrustes distance is one of the main measures of difference between shapes. It is calculated
by minimizing the Euclidean sum of squares between the landmark configurations using translation,
rotation and scale. The computation of the geodesic distance within the model (5) requires the choice
of the free parameter σ2. In order to test the sensitiveness of the final clustering with respect to
changes in the value of σ2, we adopted three different values of σ2 given by the first (rGQ1 ), the
second (rGQ2 ) and the third quartile (rGQ3 ) of the values of the variances of each landmark and for
each dimension. For each metric we computed the pairwise distances of all shapes. The obtained
distance matrices are then used in a hierarchical clustering algorithm. The behaviour of the clustering
has been evaluated by means of the a-Rand index [14]. Results for the solutions with three clusters
are reported in Table 1 below.

Table 1. a-Rand index and number of miss-classified fishes.

Shape distance dG rGQ1 rGQ2 rGQ3 PD

aRand-index 0.8957 0.6669 0.7752 0.8708 0.3495

Number of missclassified fishes 4 14 9 5 35

Results show that the shape metric with the varying variance representation leads to the best
performance in recovering the true cluster structure. The fixed variance model results in a worse
cluster recovery with different behaviours depending on the value of the free parameter σ2. For this
particular data set, the Procrustes distance turns out to have a very poor performance in terms of
cluster recovery.

As a conclusion, we only remark that the proposed shape representation allows also to study
and predict the evolution in time of a shape [15].

Acknowledgments: We thank Tommaso Russo and Domitilla Pulcini for preparing the fish data and the support
provided in commenting the results of the cluster analysis.
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