

Metabolic Investigations of Molecular Mechanisms Associated with Parkinson's Disease.

Robert Powers,^{1,2,*} Shulei Lei,¹ Annadurai Anandhan,^{3,4} Ronald L Cerny, ¹ Eric D Dodds,¹ Aracely Garcia-Garcia, ^{3,4} Reilly Grealish, ^{3,4} Yuting Huang,¹ Oleh Khalimonchuk,^{2,4} Roman Levytskyy,⁴ Jiahui Li,⁴ Nandakumar Madayiputhiya,² Renu Nandakumar,² Mihalis I Panayiotidis,⁷ Aglaia Pappa,⁶ Robert C Stanton,⁵ Laura Zavala-Flores,^{3,4} Rodrigo Franco^{3,4}

Departments of ¹Chemistry and ²Biochemistry, ³Redox Biology Center, and ⁴School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE; ⁵Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA; ⁶Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece. ⁷School of Life Sciences, Heriot-Watt University, Edinburgh, Scotland, UK

* Corresponding author: rpowers3@unl.edu

Metabolic Investigations of Molecular Mechanisms Associated with Parkinson's Disease

Abstract: Parkinson's disease (PD) is a neurodegenerative disorder characterized by fibrillar cytoplasmic aggregates of α -synuclein (i.e., Lewy bodies [LB]) and the associated loss of dopaminergic cells in the substantia nigra. But, mutations in genes such as α -synuclein (SNCA) account for only 10% of PD occurrences. The exposure to environmental toxicants including pesticides (e.g. paraquat [PQ]) and manganese (Mn), are also recognized as important PD risk factors. Thus, aging, genetic alterations and environmental factors all contribute to the etiology of PD. In fact, both genetic and environmental factors are thought to interact in the promotion of idiopathic PD, but the mechanisms involved are still unclear. In this study, we report a toxic synergistic effect between α -synuclein and either paraguat or Mn treatment. We identified an essential role for central carbon (glucose) metabolism in dopaminergic cell death induced by paraguat or Mn treatment that is enhanced by the overexpression of α -synuclein. PQ "hijacks" the pentose phosphate pathway (PPP) to increase NADPH reducing equivalents and stimulate paraguat redox cycling, oxidative stress, and cell death. PQ also stimulated an increase in glucose uptake, the translocation of glucose transporters to the plasma membrane, and AMPK activation. The overexpression of α -synuclein further stimulated an increase in glucose uptake and AMPK activity, but impaired glucose metabolism. In effect, α -synuclein activity directs additional carbon to the PPP to supply paraguat redox cycling. Alternatively, Mn induces an upregulation in glycolysis and the malate-aspartate shuttle to compensate for energy depletion due to Mn toxicity. Mn treatment causes a decrease in carbon flow through the TCA cycle and a disruption in pyruvate metabolism, which are consistent with a dysfunctional mitochondria and inhibition of pyruvate dehydrogenase. The overexpression of α -synuclein was shown to potentiate Mn toxicity by glycolysis impairment by inhibiting aldolase activity. In effect, α -synuclein overexpression negates the metabolic response to alleviate Mn toxicity that results in an increase in cell death.

Keywords: Parkinson's Disease; genetics-toxin synergy; molecular mechansims; NMR & MS

Introduction – Seminar Outline

- Overview of Parkinson's disease (PD).
- Combining NMR and MS in metabolomics
- Results of Paraquat and Manganese Treatment of Dopaminergic Neuronal Cells.

http://www.webmd.com/parkinsonsdisease/ss/slideshow-parkinsons-overview

- Synergistic Effect of α -synuclein Overexpression and Paraquat/Manganese Treatment
- Conclusion

Nebraska	Age (years)					
	60-70	70-80	80+	≥60		
PD Prevalence (per 100,000)	350	1,321	2,575	1,183		

Introduction - Parkinson's disease (PD)

- Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder that leads to shaking (tremors) and difficulty with walking, movement, and coordination.
- Loss of dopaminergic neurons from the substantia nigra pars compacta leads to deficiency of dopamine in the caudate and putamen ("striatum").
- Currently, there is no cure for PD or a treatment to stop PD progression.

https://medlineplus.gov/ency/imagepages/19515.htm

Nature 399, A32-A39(24 June 1999)

Introduction – Causes of Parkinson's disease

- The exact cause of PD is unknown.
- Only 10% of PD is Familial (Hereditary).
 - Genetic alterations in *α-synuclein*, Parkin, DJ-1, PINK1 and LRRK2 have been associated with PD
- Sporadic (Idiopathic) PD are linked to genetic alterations, *environmental* or occupational factors
- Environmental agents linked to increased incidence/risk to develop Parkinson's disease
 - Pesticides (paraquat)
 - Heavy Metals (manganese)
 - Infectious agents
 - Industrialization
 - Dietary factors

Introduction – Paraquat and Manganese are Environmental Risk Factors for PD

- Largest epidemiology study of Parkinson's disease in the US:
 - More common in Midwest and Northeast
 - Areas associated with Agriculture and Metal processing
- Environmental factors are likely common contributors to PD
 - Prolong exposure to herbicides and insecticides used in farming
 - Prolong exposure to metals, such as manganese
- Correlation between Paraquat agricultural usage and PD rates
- Paraquat selectively induces dopaminergic degeneration, one of the pathological hallmarks of PD.

Introduction – Paraquat and Manganese are Environmental Risk Factors for PD

- Urban areas of East and Midwest contain the majority of metal-emitting facilities
 - PD more common in Midwest and Northeast
 - Mn 5th most abundant metal in the earth's crust
 - Mn essential cofactor for several enzymes (e.g., superoxide dismutase, SOD)
- Mn is environmental factors for idiopathic PD
 - "manganese-induced parkonsonism" or "manganism" similar symptoms with idiopathic PD.
 - Mn reported to specifically target dopaminergic neurons in *C. elegans* to cause neurodegeneration

Exposure Category	Incidence	95% Confidence Interval	Relative Risk	95% Confidence Interval
No reported copper, manganese, or lead \underline{a}	274.0	226.8, 353.5		
High reported copper release	304.2	276.0, 336.8	1.11	0.94, 1.31
High reported manganese release	489.4	368.3, 689.5	1.78	1.54, 2.07
High reported lead release	285.7	249.3, 337.5	1.04	0.88, 1.23

Annual Incidence of Parkinson's Disease in Urban Counties

^aLess than 100 pounds (45.36 kg) of reported copper, manganese, or lead release.

Introduction – Environmental Toxins & Mitochondrial Dysfunction

- Neurons have very high energy demands and high glucose usage
- Energy metabolism alterations have been reported in early PD
 - Mitochondrial dysfunction in PD
 - Toxins alters redox homeostasis, energy metabolism and central carbon metabolism
- A clear role for metabolomics in investigating PD

Introduction – α -Synuclein is a Genetic Risk Factor for PD

- Formation of intracellular aggregates (Lewy bodies) is a pathological hallmark of PD
- α-synuclein is a major component of Lewy Bodies
 - 140 aa soluble protein of unknown function

 Oligomerization of α-synuclein fibril formation is central to pathogenesis of PD

Introduction – Gene-Environment Interactions in PD

 Mitochondrial dysfunction and energy failure induced by environmental toxicants can lead to α-synuclein misfolding and aggregation by an impairment in protein quality control mechanisms

Results and discussion – Metabolomes Extracted from Dopaminergic Cells and Brain Tissues

Results and discussion – A Combined NMR and MS Metabolomics Protocol was applied to Investigate PD

Results and discussion – NMR and MS Spectral Data Processed with Multiblock-PCA and our MVAPACK Software

Integrate Data From Multiple Analytical Methods

Worley & Powers (2014) ACS Chem. Biol. 9(5):1138-1144

Results and discussion – Parkinson's Disease and Mitochondrial/Environmental Toxins

- Mitochondrial dysfunction and energy failure Herbicides, pesticides, and designer drugs induce Parkinson's-like symptoms
 - Used as Equivalent molecular models for Parkinson's Disease
 - All result in dopaminergic neuronal cell death
- Our Metabolomics data indicate different molecular mechanisms of action
 - Focused on Paraquat (PQ)

Lei *et al.* (2014) *ACS Chem Biol.* 9(2):282-285 15 Marshall *et al.* (2015) *Metabolomics*, 11:391-401

Results and discussion – Paraquat (PQ) Treatment of Dopaminergic Neuronal Cells Leads to Irreversible Cell Death

Cells Recover when Treated with Other Toxins

Lei *et al.* (2014) *ACS Chem Biol.* 9(2):282-285 16 Marshall *et al.* (2015) *Metabolomics,* 11:391-401

Results and discussion – Paraquat (PQ) Induces Dramatic Changes in metabolome of Dopaminergic Neuronal Cells

Integrate Data From Multiple Analytical Methods

NMR (A) and MS (B) paraquatinduced spectral changes

Backscaled multiblock-PLS-DA loadings from NMR (A) and MS (B) data

> Lei *et al.* (2014) *ACS Chem Biol.* 9(2):282-285 17 Marshall *et al.* (2015) *Metabolomics*, 11:391-401

Results and discussion – Paraquat (PQ) Induces Dramatic Changes in Metabolome of Dopaminergic Neuronal Cells

Lei et al. (2014) ACS Chem Biol. 9(2):282-285 Marshall et al. (2015) Metabolomics, 11:391-401

Results and discussion – Paraquat (PQ) Induces Alterations in Glucose Metabolism and Pentose Phosphate Pathway (PPP)

Lei *et al.* (2014) *ACS Chem Biol.* 9(2):282-285 Marshall *et al.* (2015) *Metabolomics*, 11:391-401

Results and discussion – Paraquat (PQ) Induces Dramatic Changes in Proteome of Dopaminergic Neuronal Cells

Marshall *et al.* (2015) *Metabolomics*, 11:391-401

ge (PO	alabal							
chani	-3.0	gioba 514 0	4.1521					
Fold	#12345678910	Identified Proteins Peroxinedoxin-6 Protein disulfide-isomerase A3 Isoform 2 of Protein disulfide-isomerase A6 Isoform Long of Glucose 6-phosphale 1-dehydrogenase Thioredoxin-dependent peroxide reductase, mitochondrial Glutathione S-transferase P Protein disulfide-isomerase A4 Thioredoxindoman-containing protein 5 Isoform Cytoplasmic-peroxisomal of Peroxitecdoxin-5, mitochondrial	MW 25 kDa 57 kDa 54 kDa 55 kDa 64 kDa 28 kDa 23 kDa 73 kDa 48 kDa 17 kDa					
	11 12 13 14 15	Galectin-1 10 KDa heat shock protein, mitochondrial 60 KDa heat shock protein, mitochondrial Isoform 2 of Eukaryolic translation initiation factor 5A-1 Isoform 3 of Spectrin alpha chain, brain	15 kDa 11 kDa 61 kDa 20 kDa 282 kDa					
	16 17 18	lsoform 1 of DNA-dependent protein kinase catalytic subunit Cyclin-dependent kinase inhibitor 1B DNA damage-binding protein 1	469 kDa 22 kDa 127 kDa					
	$\begin{array}{c} 19\\ 20\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22$	Mosein Isoform 1 of Tropomyosin alpha-4 chain Alpha-actinin-1 Zyxin Alpha-actinin-4 Isoform 3 of Tropomyosin alpha-1 chain Isoform 2 of Filamin-A Soform 2 of Filamin-A Soform 2 of Filamin-A Soform 2 of Filamin-A Cofilin-1 Profilin-1 Transforming protein RhoA Lamin-8 Soform Non-muscle of Myosin light polypeptide 6 Isoform Long of Spectrin beta chain, brain 1 Calipoin-5 Soform Non-muscle of Myosin light polypeptide 6 Isoform Long of Spectrin beta chain, brain 1 Calipoin-5 Calipoin-5 Tubulin beta Tubulin beta Eeta actin-like protein 2 Soform 1 of Myosin-Ic	0a 0a 0a 0a 0400 0400 0500 0500 0500 0500 0500 05					
	48 50 51 52 53 54 55 56 57 58 59	ATP synthase subunit beta, mitochondrial Malate dehydrogenase, mitochondrial Isoform Mitochondrial of Fumarate hydratase, mitochondrial ATP synthase subunit alpha, mitochondrial 285 ribosoma Jorotein S22, mitochondrial Heat shock 70 KDa protein 1A/1B Isoform 2 of Voltage-dependent anion-selective channel protein 2 Isoform 1 of L-lactate dehydrogenase A chain Cytochrome b c1 complex subunit 6, mitochondrial L-lactate dehydrogenase B chain Isoform 1 of Protein-glutamine gamma-glutamyttransferase 2 Heat shock 70 KDa protein 4	57 kDa 36 kDa 55 kDa 60 kDa 41 kDa 30 kDa 37 kDa 37 kDa 77 kDa 94 kDa					
	60 61 62 63 64	Pyruvate kinase ATP-citrate synthase Isoform M2 of Pyruvate kinase isozymes M1/M2 Phosphoglycerate kinase 1 Fath acid Synthase	65 kDa 121 kDa 58 kDa 45 kDa 273 kDa					
	65 66 67 68 69 70 71	Probasome subunitalpha type-2 Cathepsin B Ubiquitin-conjugating enzyme E2L3 Putative heat shock protein HSP 90-beta 4 Dipeptidy peptidase 4 NEDD8 Probable carboxypeptidase X1	26 kDa 38 kDa 18 kDa 58 kDa 88 kDa 9 kDa 82 kDa					

20

Results and discussion – Integration of Metabolomics and Proteomics Data

- Increase in pentose phosphate pathway (PPP) enzymes
 - G6PD, glucose-6-phosphate dehydrogenase
- Increase in PPP metabolites
 - glucose 6-phosphate, fructose 6-phosphate, glucono-1,5-lactone and erythrose 4-phosphate
- Decrease in glycolysis and TCA cycle

Lei et al. (2014) ACS Chem Biol. 9(2):282-285 Marshall et al. (2015) Metabolomics, 11:391-401

Results and discussion – G6PD Regulates Paraquat Toxicity

- Over-expression leads to increase in cell death with paraquat treatment G6PD
 - No change for other Mitochondrial/Environmental Toxins

Cell death and oxidative stress induced by PQ is alleviated by G6PD inhibitor

Lei et al. (2014) ACS Chem Biol. 9(2):282-285 Marshall et al. (2015) Metabolomics, 11:391-401

Results and discussion – Paraquat "Hijacks" the Pentose Phosphate Pathway

- Paraquat-induced oxidative stress requires NADPH as an electron donor for its redox recycling
 - increases NADPH reducing equivalents
 - Stimulates paraquat redox cycling, oxidative stress and cell death

 Anandham et al. (2016) Mol. Neurobiol. doi:10.1007/s12035-016-9906-2

 Lei et al. (2014) ACS Chem Biol. 9(2):282-285
 23

 Marshall et al. (2015) Metabolomics, 11:391-401

Results and discussion – Glucose Metabolism Regulates PQ Toxicity

PQ Induces Glucose Uptake

PQ Toxicity is Diminished with Inhibition of Glucose Transporter

PQ Toxicity is Diminished with Glucose Deprivation

PQ Toxicity is Diminished with Inhibition of production of glucos-6-phosphate

 Anandham et al. (2016) Mol. Neurobiol. doi:10.1007/s12035-016-9906-2

 Lei et al. (2014) ACS Chem Biol. 9(2):282-285

 24

 Marshall et al. (2015) Metabolomics, 11:391-401

Results and discussion – Glucose Metabolism Regulates PQ Toxicity

Anandham *et al.* (2016) *Mol. Neurobiol.* doi:10.1007/s12035-016-9906-2 Lei *et al.* (2014) *ACS Chem Biol.* 9(2):282-285 Marshall *et al.* (2015) *Metabolomics,* 11:391-401

Results and discussion – AMPK Protects Against PQ Toxicity

PQ Toxicity Increase due to AMPK inhibition is reversed with glucose deprivation

PQ Toxicity is Increased with Inhibition of AMPK

26

Results and discussion –*In vivo* Metabolic Dysfunction Induced by PQ

- Paraquat-induced toxicity is brain region specific (no noticeable animal response)
- Largest impact on Midbrain location of *substantia nigra*, where dopaminergic neurons are concentrated
 - Male C57/BL/6 mice (8-10 weeks old)
 - One intraperitoneal injection of 10 mg/kg paraquat or saline control twice a week for 9-weeks

Anandham *et al.* (2016) *Mol. Neurobiol.* doi:10.1007/s12035-016-9906-2 Lei *et al.* (2014) *ACS Chem Biol.* 9(2):282-285 27 Marshall *et al.* (2015) *Metabolomics,* 11:391-401

Results and discussion – Cell Death and Metabolic Dysfunction Induced by Manganese Toxicity

Mn Treatment Perturbs the Metabolome of the Midbrain

Results and discussion – Mn Increases Glucose Metabolism and Malate-Aspartate Shuttle, and Decreases TCA Cycle

Results and discussion – Mn Increases Glucose Metabolism and Malate-Aspartate Shuttle, and Decreases TCA Cycle

- Mn toxicity produces an energy depletion
 - Inhibition of glycolysis enhances loss of ATP

Mn appears to inhibit pyruvate dehydrogenase (PDH) activity

Results and discussion – Impaired Glycolysis Enhances Mn Toxicity

Mn Toxicity Increased Due to Glucose Deprivation

Mn Toxicity Increased Due to Decrease in Glucose Uptake

S. Lei et al. (2016) J. Neurochem, in preparation

Results and discussion – Upregulated Glycolysis is the Metabolic Response to Energy Depletion Induced by Mn

Results and discussion – AMPK Protects Against Mn Toxicity

AMPK Inactivation

Mn Toxicity Increased Due

S. Lei et al. (2016) J. Neurochem, in preparation

Results and discussion – α -synuclein Potentiates PQ or Mn Toxicity and Metabolic Dysfunction

α -synuclein increase cell death

S. Lei *et al.* (2016) *J. Neurochem*, in preparation Anandham *et al.* (2016) *Mol. Neurobiol.* doi:10.1007/s12035-016-9906-2 Lei *et al.* (2014) *ACS Chem Biol.* 9(2):282-285

Results and discussion – Glucose Metabolism Contributes to Synergistic Toxicity Between Paraquat and α-Synuclein

- Overexpression in α-synuclein and exposure to paraquat:
 - increase glucose uptake, glycolysis
 - translocation of glucose transporters to plasma membrane
 - upregulation of the pentose phosphate pathway
 - stimulated the activation of adenosine monophosphateactivated protein kinase (AMPK)
 - o master regulator of metabolism in response to energy deficiency

	Increase in AMPK activity								
ΡQ [μΜ]	_	<u> </u>			50		100		
Empty	÷	•	•	+	•	•	÷	•	•
α-synuclein	-	÷	•	•	÷	•	•	+	•
A53T	•	•	÷	•	•	+	•	•	÷
pAMPK T172				T	-	-	I		1
AMPKa1	1	1	1	-	-			-	
vs <u>Cont</u>	1	1.7	2.7	3.9	6.1	6.2	10	24	44
vs <u>Emptv</u>				1			1		

Translocation of glucose transporters to plasma membrane

35

Results and discussion – Glucose Metabolism Contributes to Synergistic Toxicity Between Mn and α-Synuclein

α-synuclein Impairs Glycolysis and Negates Cell Response to Mn Toxicity

36 S. Lei *et al.* (2016) *J. Neurochem*, in preparation

Results and discussion – Glucose Metabolism Contributes to Synergistic Toxicity Between PQ and α-Synuclein

AMPK activation prevents paraquat induced cell death (significant metabolic changes only observed with a dominantnegative form of AMPK)

Ascorbic acid (AA) enhances AMPK activation prevents paraguat induced cell death

Anandhan A., et al Molecular neurobiology (2016), doi:10.1007/s12035-016-9906-2

37

Results and discussion – α -synuclein Impairs Aldolase Activity Through a Protein-Protein Interaction

Results and discussion – α -synuclein Potentiates PQ or Mn Toxicity and Metabolic Dysfunction

Lei et al. (2014) ACS Chem Biol. 9(2):282-285

Conclusions

- Paraquat
 - hijacks the NADPH from the PPP to redox cycle, induce oxidative damage and impair antioxidant defenses
 - increases glucose transport and carbon flux to the PPP.
 - Impairs TCA cycle leading to increased citrate accumulation, which leads to an impairment in glycolysis
- Manganese
 - Toxicity results in energy depletion
 - Inhibits pyruvate dehydrogenase
 - Induces an increase in glycolysis
- α-synuclein
 - Inhibits Aldolase activity
 - Impairs glycolysis and upregulates glucose transport
 - Channels carbon flux to the PPP to increase PQ's redox cycling and ROS formation
 - Potentiates environmental toxicity (Manganese and Paraquat)
 - Facilitates ATP depletion induced by Mn exposure
- Glucose metabolism regulates α-synuclein + PQ toxicity
 - Paraquat increases glucose transport and translocation of glucose transporters.
 - Inhibition of GLUT-like transporters prevents α-synuclein + PQ toxicity.
 - Inhibition of PPP protects against α-synuclein + PQ
- AMPK signaling exerts a protective effect
 - Activation of AMPK can be mediated by both ROS and ATP depletion.

Acknowledgments

Back Row: : Eli Riekeberg, Fatema Bhinderwala, Shulei Lei Front Row: Dr. Robert Powers, Darrell Marshall, Tessa Andrews, Jonathan Catazaro, Lukas Brenden; Not Pictured: Teklab Gebregiworgis, Samantha Lonergan, AJ Lowe, Brad Worley, Bo Zhang, Steve Halouska **Funding**

- American Heart Association (0860033Z)
- NIH (P20 RR-017675, RO1AI087668, R21AI087561, 1P30RR033378)
- NIH (R21AI081154, P50 GM62413, AI083211-06, R01 CA163649-01A1)
- NIH (1P30RR033378); DoD (CDMRP W81XWH-13-1-0315)
- Nebraska EPSCoR, Maude Hammond Fling Faculty Research Fellowship
- John C. and Nettie V. David Memorial Trust Fund
- Nebraska Tobacco Settlement Biomedical Research Development Funds

Collaborators

UNL NMR/MS Facility

- Ronald L Cerny
- Martha Morton
- Beth Donovan

UNL

- Annadurai Anandhan, VBMS
- Rodrigo Franco Cruz, VBMS
- Eric D Dodds, Chemistry
- Aracely Garcia-Garcia, VBMS
- Reilly Grealish, VBMS
- Yuting Huang, Chemistry
- Oleh Khalimonchuk, Biochemistry
- Roman Levytskyy, VBMS
- Jiahui Li, VBMS
- Nandakumar Madayiputhiya, Biochemistry
- Renu Nandakumar, Biochemistry
- Laura Zavala-Flores, VBMS

Heriot-Watt University

• Mihalis I Panayiotidis

Democritus University of Thrace

Aglaia Pappa

Harvard Medical School

Robert C Stanton

