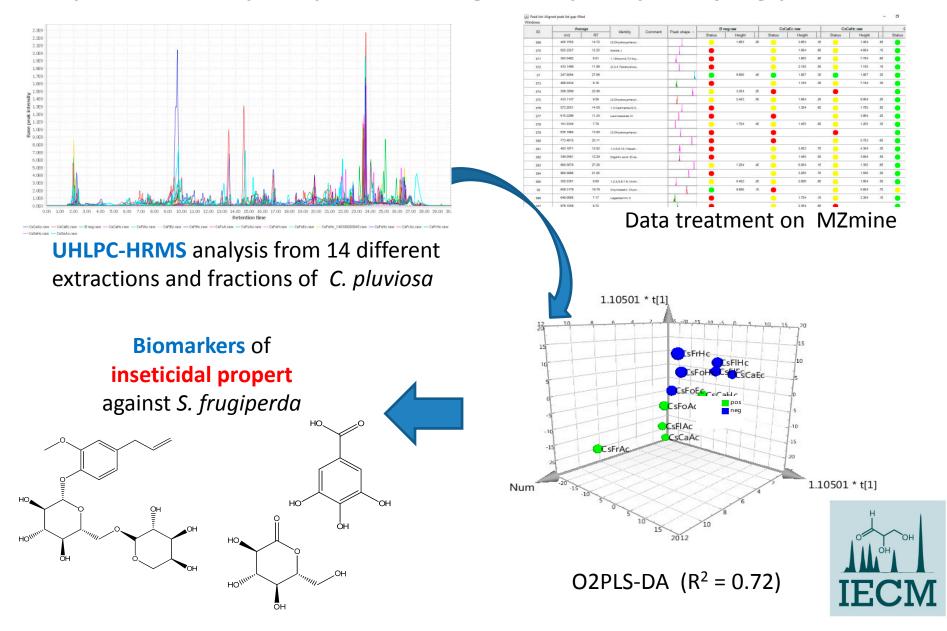


Metabolomic to target insecticidal compounds of *Caesalpinia* pluviosa var. peltophoroides against Spodoptera frugiperda

João Luiz Baldim Zanin¹, Olivia Silva Domingos¹, Antônio Rogério Bernardo², Ana Carolina Volante², Andréia Pereira Matos², João Henrique Ghilardi Lago³, Daniela Aparecida Chagas-Paula^{1,*}, Marisi Gomes Soares¹


¹ Laboratório de Fitoquímica e Química Medicinal - LFQM, Instituto de Química, Universidade Federal de Alfenas – UNIFAL-MG, Alfenas - MG.

² Departamento de Ciências Exatas, Universidade Federal de São Carlos - UFSCar, São Carlos - SP.
³ Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo - UNIFESP, São Paulo - SP.

* Corresponding author: da.chagaspaula@gmail.com

Metabolomic to target insecticidal compounds of *Caesalpinia* pluviosa var. peltophoroides against Spodoptera frugiperda

Abstract

Introduction: *Spodoptera frugiperda* (Lepidoptera: Noctuidae) is one of the main plagues of maize cultivation and it is resistant to the most used insecticides. Plants are important source of biopesticides due to their own mechanisms of interaction and diversified composition. Thus, fractions (hexane, acetate and hydro-ethanol) of extracts from different parts of *Caesalpinia pluviosa* var. *peltophoroides* (Fabaceae) have their insecticidal activity investigated. Chemical composition of fractions were evaluated by UHPLC-HRFTMS, thereafter processed on MZmine 2.2 software and exported to do multivariate statistical analysis (MSA) - O2PLS-DA (SIMCA-P 13.0). The dereplication of compounds were performed using DNP[©], Scifinder[®] and our in house *Caesalpinia* database.

Results and Discussion: Six fractions were inactive and five displayed pupal or larval mortality. The O2PLS-DA analysis found a clear separation of inactive and insecticidal group (R^2 = 0,72) and indicated the metabolites highly correlated with the insecticidal property (VIP>1.95): eugenyl vicianoside; gluconic acid lactone and gallic acid.

Conclusions: Through metabolomic strategies was possible to dereplicate the compounds most correlated with insecticidal property and this knowledge can be very useful to development of new techniques to the crop pest control.

Acknowledgements: FAPEMIG and CNPQ for the financial funding and the AsterBioChem for the UHPLC-HRMS analysis.

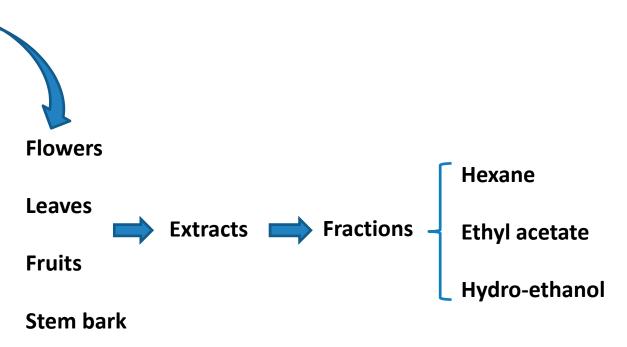
Keywords: metabolomic; *Caesalpinia pluviosa; Spodoptera frugiperda;* insecticidal; UHPLC-HRMS

Introduction

-Spodoptera frugiperda (Lepidoptera: Noctuidae) is one of the main plagues of maize cultivation.

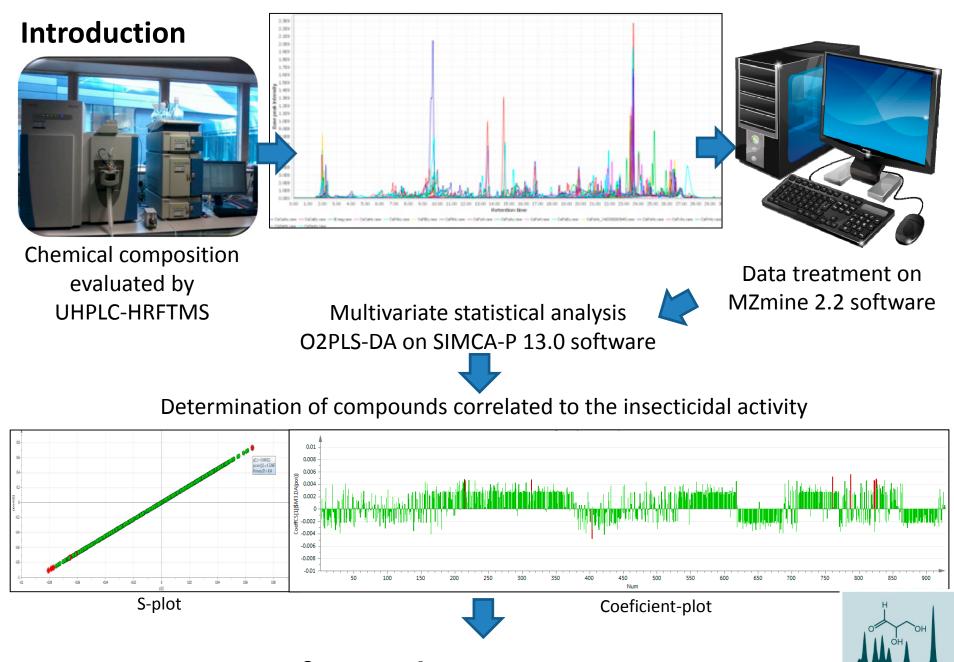
-It is resistant to the most used insecticides only controlled with pyrethroids and organophosphates (RIBEIRO et al., 2012). Source: www.agrolink.com.br

-Plants are important source of biopesticides due to the diversified occurrence of secondary metabolites and the evolution of natural mechanisms of interaction (defense or attraction).

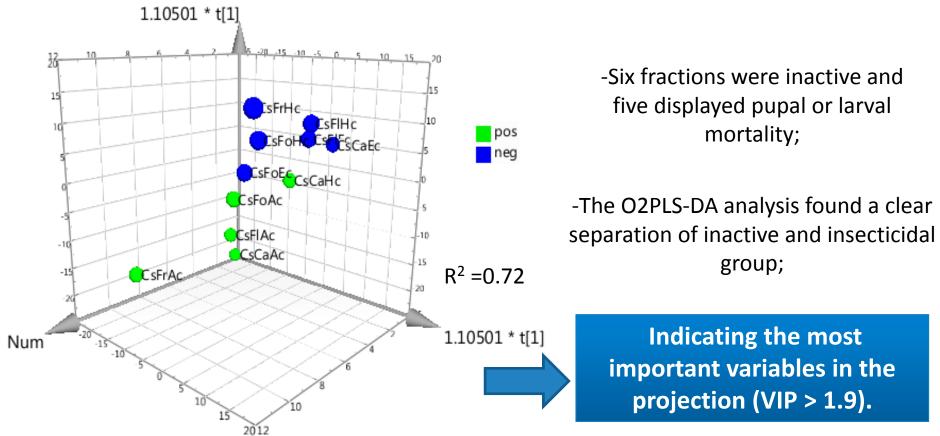


Source: http://www.pioneersementes.com.br

Introduction



Caesalpinia pluviosa var. *peltophoroides* (Fabaceae)


All fractions have their *in vitro* insecticidal activity investigated against *Spodoptera frugiperda*

Dereplication using DNP[©] , Scifinder[®] and our in house *Caesalpinia* database

Results and Discussion

Retention time	[M-H] ⁻	Molecular formula	Error (ppm)	Dereplication	VIP
6.98	457.1709	C21H30O11	-1,17	Eugenyl vicianoside	2.2
2.20	177.0395	C6H10O6	-5,43	Gluconic acid lactone	2.1
4.17	169.0133	С7Н6О5	-5,6	Gallic acid	1.9

Conclusion

-Through metabolomic strategies was possible to dereplicate the compounds most correlated with insecticidal property

-The fractions and substances correlate with this property can be very useful to development of new techniques to the crop pest control.

Acknowledgements

Universidade Federal de Alfenas

UHPLC-MS analysis:

Metabolomic studies

