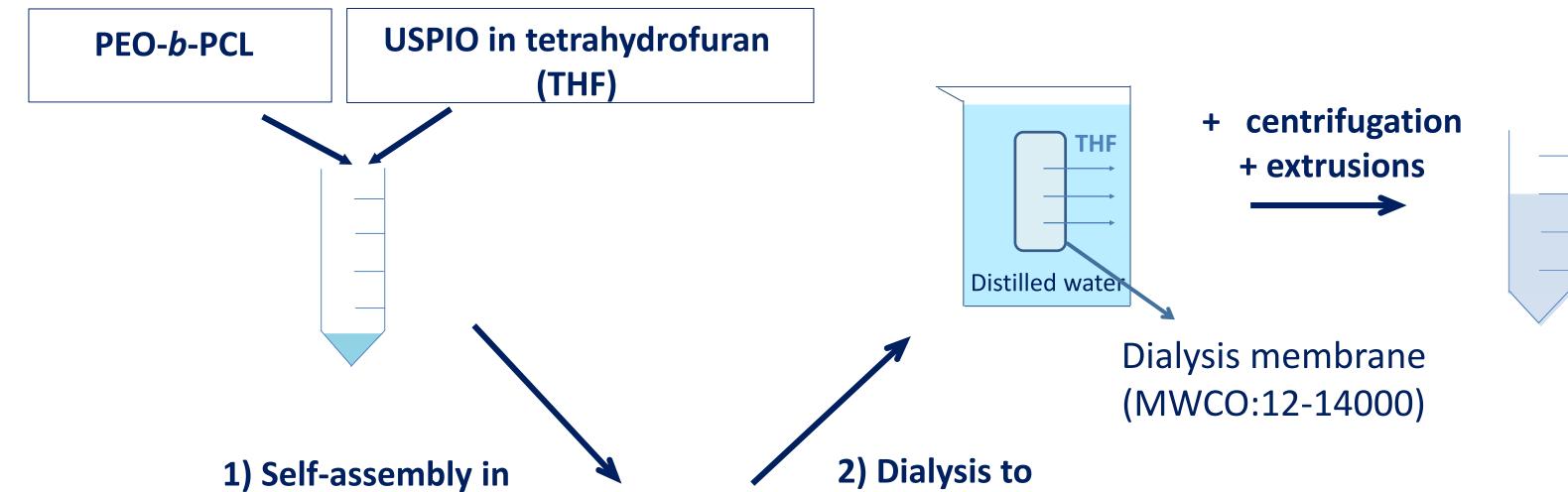

Clustering of iron oxide nanoparticles into poly(ethylene oxide)-*block*-poly(ε-caprolactone) nanoassemblies as ultrasensitive MRI probes

A. Hannecart¹, D. Stanicki¹, L. Vander Elst^{1, 2}, L. Mespouille³, R. N. Muller^{1,2}, S. Laurent^{1,2}

¹NMR and Molecular Imaging Laboratory, General, Organic and Biomedical Chemistry Department, University of Mons, B-7000 Mons, Belgium ²Center for Microscopy and Molecular Imaging, B-6041 Charleroi, Belgium ³Laboratory of Polymeric and Composite Materials, University of Mons, B-7000 Mons, Belgium


Introduction

Polymer vesicles, called polymersomes, are hollow spheres formed by the self-assembly of amphiphilic polymers with long hydrophobic blocks (Fig 1.). Thanks to their high robustness, polymersomes have emerged as promising nanocarriers. The objective of this project is to study the self-assembly of PEO_{2000} -*b*-PCL₁₂₆₅₀ copolymers with ultrasmall iron oxide nanoparticles (USPIO). A composition close to PEO_{2000} -*b*-PCL₁₂₀₀₀ was chosen owing to the tendency of these copolymers to form a vesicular morphology. Several studies have reported the formation of poly(ethylene oxide)-*block*-poly(ε -caprolactone) (PEO-*b*-PCL) based vesicles due to their high potential for biomedical applications. However, to the best of our knowledge, no work has be done on the incorporation of USPIO into nanoassemblies produced from PEO-*b*-PCL copolymers with long PCL blocks.

Figure 1. Schematic representation of a polymersome

USPIO (magnetic core size of 4.2 nm and 7.5 nm) were produced by thermal decomposition of iron(III) acetylacetonate in the presence of surfactants in an organic solvent at high temperature (>200°C).

Nanoprecipitation of PEO_{2000} -*b*-PCL₁₂₆₅₀ with iron oxide nanoparticles was performed by varying the initial nanoparticle concentration (Fig. 2). The best results were obtained by mixing 10 mg of copolymer with 500 µl of THF containing USPIO ([Fe]₀ = 40 mM for d_{USPIO} = 7.5 nm, [Fe]₀ = 80 mM for d_{USPIO} = 4.2 nm).

THF/H₂O (0.5:9)

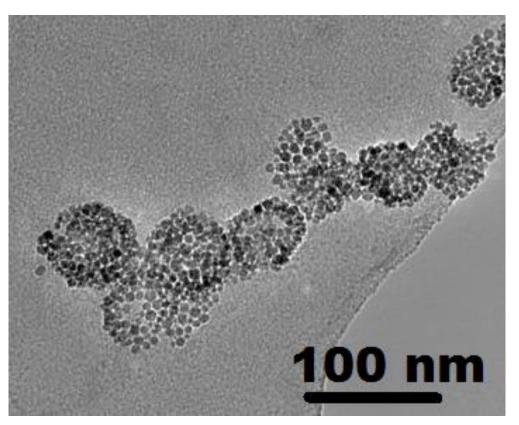

remove THF

Figure 2. Self-assembly of PEO_{2000} -b-PCL₁₂₆₅₀ with USPIO by the nanoprecipitation method

Results and discussions

Size and morphology

Dynamic light scattering (DLS), transmission electron microscopy (TEM) and cryo-TEM analyses (Fig. 3) showed that nano-objets produced by the self-assembly of PEO_{2000} -*b*-PCL₁₂₆₅₀ with USPIO are spherical, possess a high USPIO content and a diameter close to 100 nm

r₁ and r₂ relaxivities

The efficiency of a MRI (magnetic resonance imaging) contrast agent is quantified by its longitudinal and transverse relaxivities (r_1 and r_2). T_2 -weighted contrast agents decrease MRI signal intensity where they accumulate. The most effective T_2 -weighted contrast agents are those characterized by the higher r_2/r_1 ratio. Incorporation of USPIO into PEO-*b*-PCL nanoparticles leads to a significant increase of r_2/r_1 ratios (r_1 decreases due to a reduced accessibility of water protons to USPIO and r_2 increases due to USPIO clustering) (table 1).

Table 1. Relaxivities $(r_1 \text{ and } r_2)$ at 37°C and 60 MHz

7.8

17.9

	r ₁ (s ⁻¹ mM ⁻¹)	r ₂ (s ⁻¹ mM ⁻¹)	r_2/r_1	r ₁ (s ⁻¹ mM ⁻¹)	r ₂ (s⁻¹mM⁻¹)	r ₂ /r ₁
	USPIO (THF)			USPIO loaded in PEO ₂₀₀₀ - <i>b</i> -PCL ₁₂₆₅₀ (water)		
d _{ՍՏΡΙΟ} = 7.5 nm	12.9	37.8	3.0	1.22	198	162

2.3

Figure 3. Cryo-TEM images* of PEO_{2000} -b-PCL₁₂₆₅₀ nanoassemblies loaded with USPIO ($d_{USPIO} = 7.5 \text{ nm}$)

Conclusions and perspectives

USPIO possessing two different diameters (d = 4.2 nm and d = 7.5 nm) were produced by the thermal decomposition method and incorporated into PEO_{2000} -*b*-PCL₁₂₆₅₀ nanoassemblies by a nanoprecipitation method. Extrusions were performed to produce 100 nm diameter polymeric nanoparticles with a narrow size distribution which is ideal for *in vivo* applications. These polymeric nanoparticles were loaded with a high USPIO content by optimizing the initial USPIO concentration and are characterized by very high r_2/r_1 ratios which demonstrates that they are promising candidates as T_2 -contrast agents. Further research will focus on the incorporation of an anti-cancer drug into these nanocarriers and the attachment of an active targeting group such as an RGD-containing peptide to their surfaces.

d_{USPIO} = 4.2 nm

2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

0.28

110

389

*The authors thank O. Ersen and D. Ihiawakrim from Institut de Physique et Chimie des Matériaux of Strasbourg for cryo-TEM analyses.