

2nd International Electronic Conference on Medicinal Chemistry

1-30 November 2016 chaired by Dr. Jean Jacques Vanden Eynde

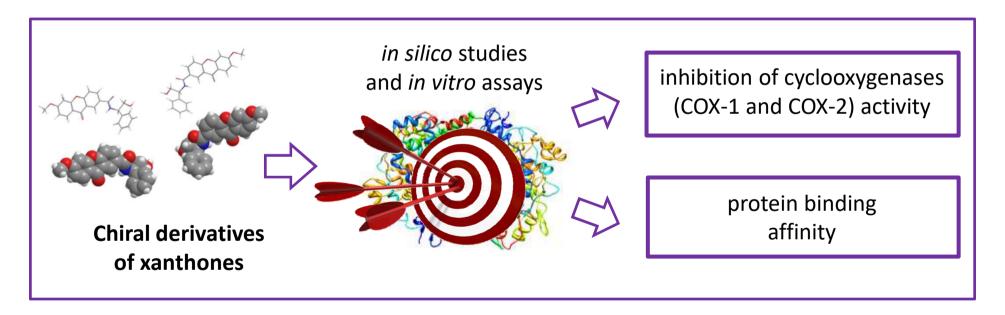
Chiral derivatives of xanthones: investigation of enantioselectivity as inhibitors of cyclooxygenases (COX-1 and COX-2) and binding interaction with human serum albumin

Carla Fernandes^{1,2}, Andreia Palmeira^{1,2}, Inês I. Ramos¹, Carlos Carneiro¹, Carlos Afonso^{1,2}, M. Elizabeth Tiritan^{1,2,3}, Honorina Cidade^{1,2}, Paula C.A.G. Pinto⁴, M. Lúcia M.F.S. Saraiva⁴, Salette Reis⁴, Madalena M.M. Pinto^{1,2*}

¹Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; ²Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal; ³CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra PRD, Portugal; ⁴REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto.

Rua de Jorge Viterbo Ferreira, 228, 4050 313 Porto, Portugal.

* Corresponding author: madalena@ff.up.pt



sponsored by

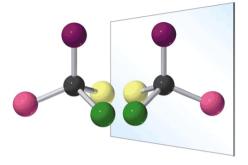
pharmaceuticals

Chiral derivatives of xanthones: investigation of enantioselectivity as inhibitors of cyclooxygenases (COX-1 and COX-2) and binding interaction with human serum albumin

Graphical Abstract

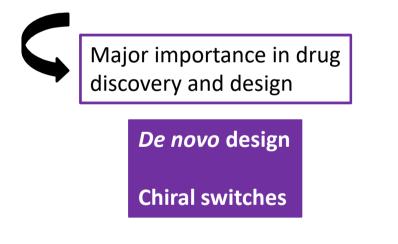
2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016 sponsors: MDPI

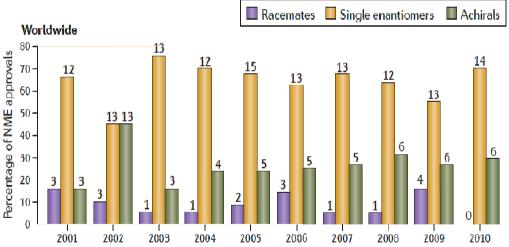
pharmaceuticals


Abstract:

Searching for new enantiomerically pure chiral derivatives of xanthones (CDXs) with potential pharmacological properties has remained an area of interest of our group, namely those with anti-inflammatory activity. Herein, we describe *in silico* studies and *in vitro* inhibitory assays of different enantiomeric pairs of CDXs. The evaluation of the inhibition of cyclooxygenases (COX-1 and COX-2) activities was performed by using the COX Inhibitor Screening Assay Kit. Docking simulations between the small molecules (CDXs, known ligands and decoys) and the enzyme targets were undertaken with AutoDock Vina embedded in PyRx – Virtual Screening Tool software. All the CDXs evaluated exhibited COX-1 and COX-2 inhibition potential as predicted. Considering that the (*S*)-(-)-enantiomer of the nonsteroidal anti-inflammatory drug Ketoprofen preferentially binds to albumin, resulting in lower free plasma concentration than (*R*)-(+)-enantiomer, protein binding affinity for CDXs was also evaluated by spectrofluorimetry. For some CDXs enantioselectivity was observed.

Keywords: chiral derivatives of xanthones, cyclooxygenase, albumin, enantioselectivity



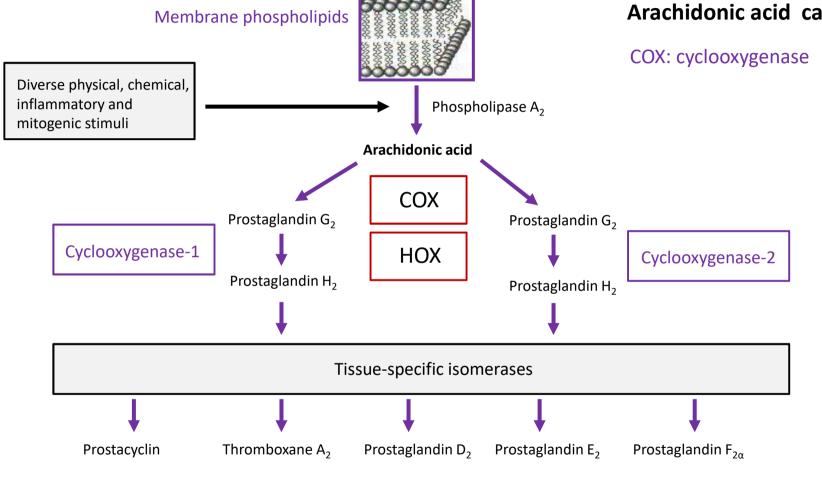


Chirality plays a key role in biochemical events

Chiral molecular recognition strongly influences drug action and efficacy

Frequently only one of the two enantiomers exerts the desired effect **Eutomer/Distomer**

Agranat, S. R. Wainschtein, and E. Z. Zusman, Nat. Rev. Drug Discov., 2012, 11, 972–973.

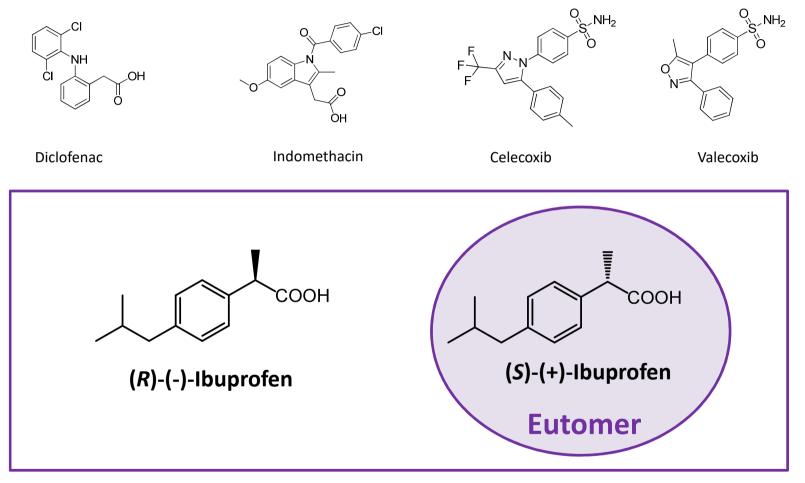

2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

pharmaceuticals

Introduction INFLAMMATORY PATHWAY AND ITS MEDIATORS Arachidonic acid cascade Membrane phospholipids COX: cyclooxygenase Diverse physical, chemical, Phospholipase A₂ mitogenic stimuli Arachidonic acid COX

FitzGerald, G. A., Nat Rev Drug Discov, 2003, 2(11), 879-890.

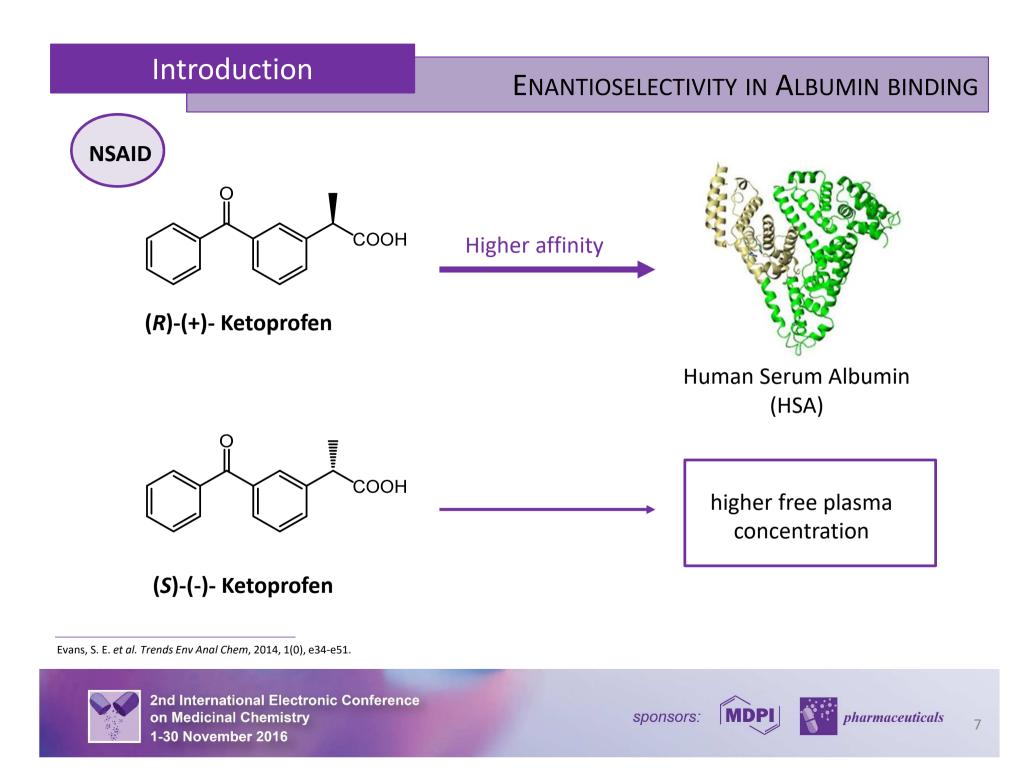
2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

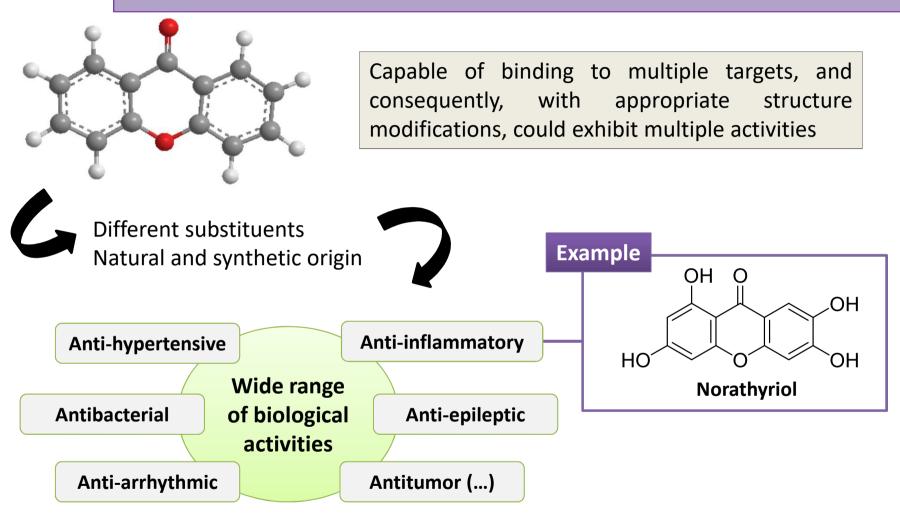


pharmaceuticals

Introduction

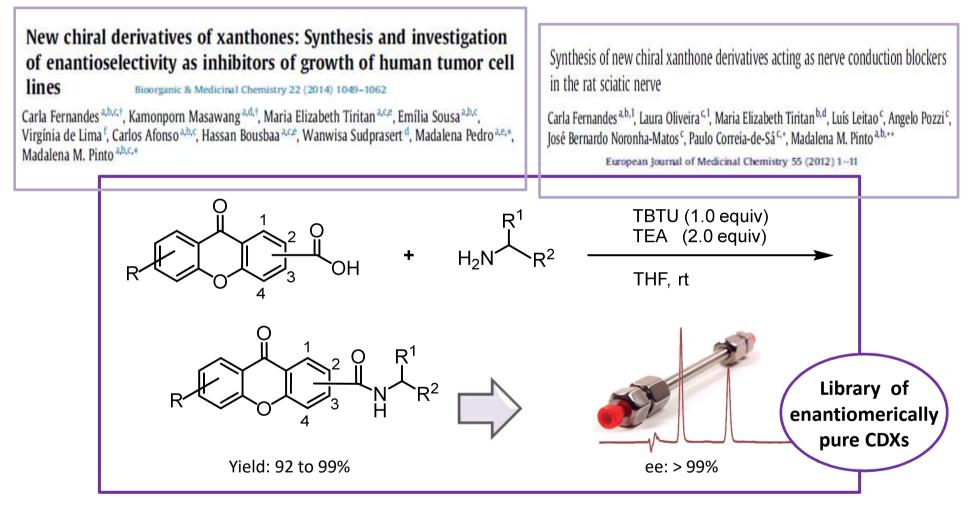
ENANTIOSELECTIVITY IN INFLAMMATORY ACTIVITY


Examples of nonsteroidal anti-inflammatory drugs (NSAIDs):


2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

XANTHONE – A PRIVILEGED STRUCTURE

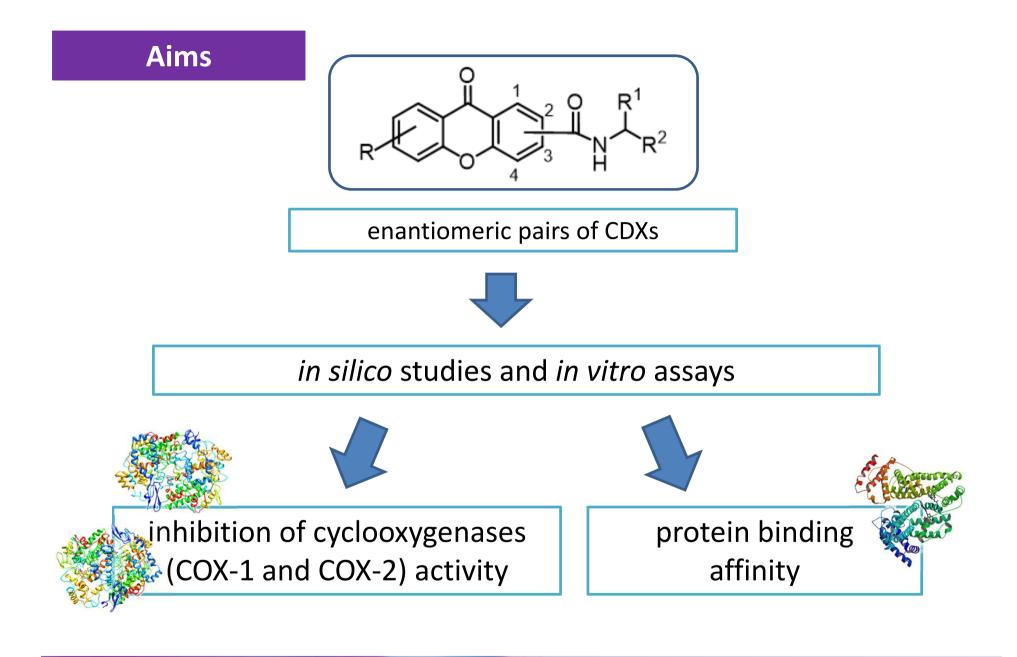
Pinto, M., E. Sousa, *et al.* Curr Med Chem, 2005, 12(21), 2517-2538. Shagufta and I. Ahmad, *Eur J Med Chem*, 2016, 116, 267-280.


2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

pharmaceuticals

Introduction

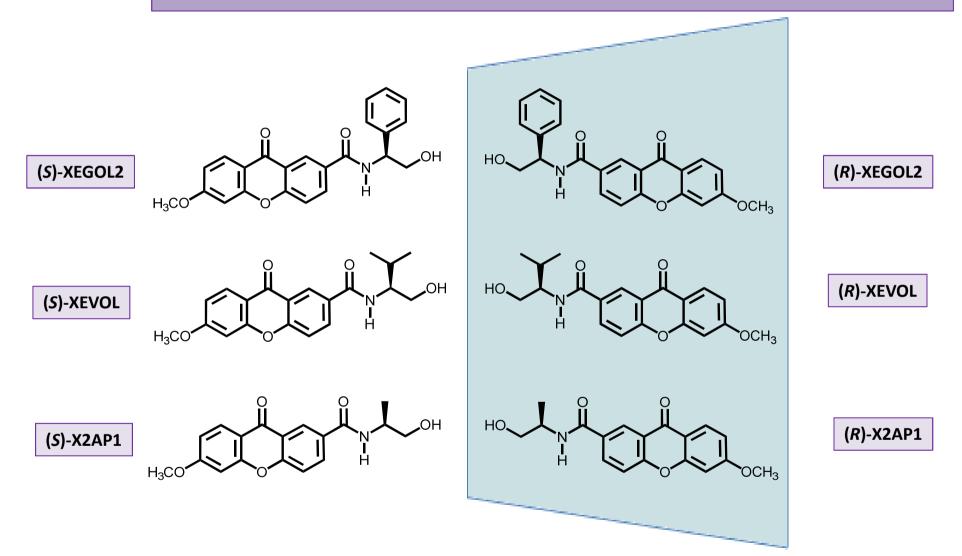
CHIRAL DERIVATIVES OF XANTHONES


CDX: Chiral derivative of xanthone;TBTU: *O*-(Benzotriazol-1-yl)-*N*-*N'*-*N'*-tetramethyluronium tetrafluoroborate; TEA: Triethylamine; THF: Tetrahydrofuran; ee : enantiomeric excess.

2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

sponsors:

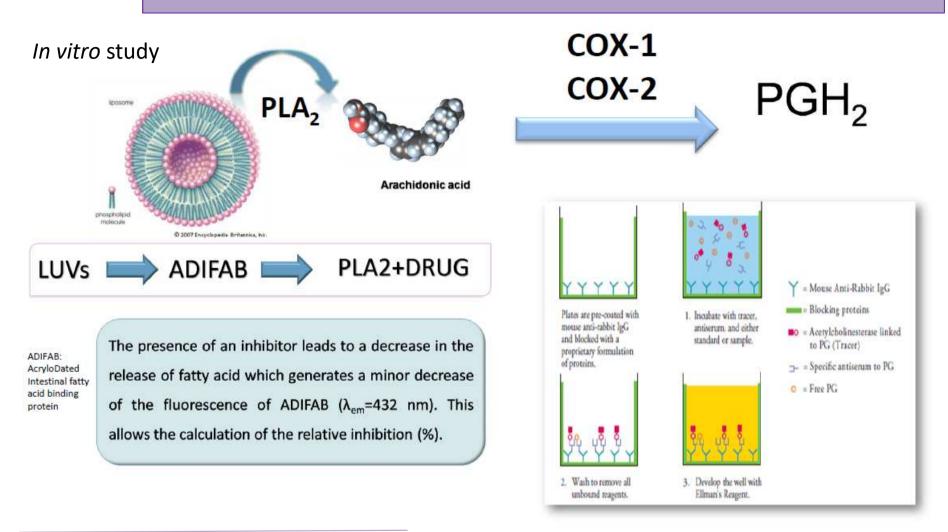
pharmaceuticals



2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

pharmaceuticals

ENANTIOMERIC PAIRS OF CDXS


2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

sponsors:

pharmaceuticals

INHIBITION OF CYCLOOXYGENASES

Gelb, H., Jain, M. K., Berg, O., *Bioorg. Med. Chem. Lett.*, 1992, 1335. Dixon D.A., *et al.*, *J Biol Chem*, 2000, 275, 11750–11757.

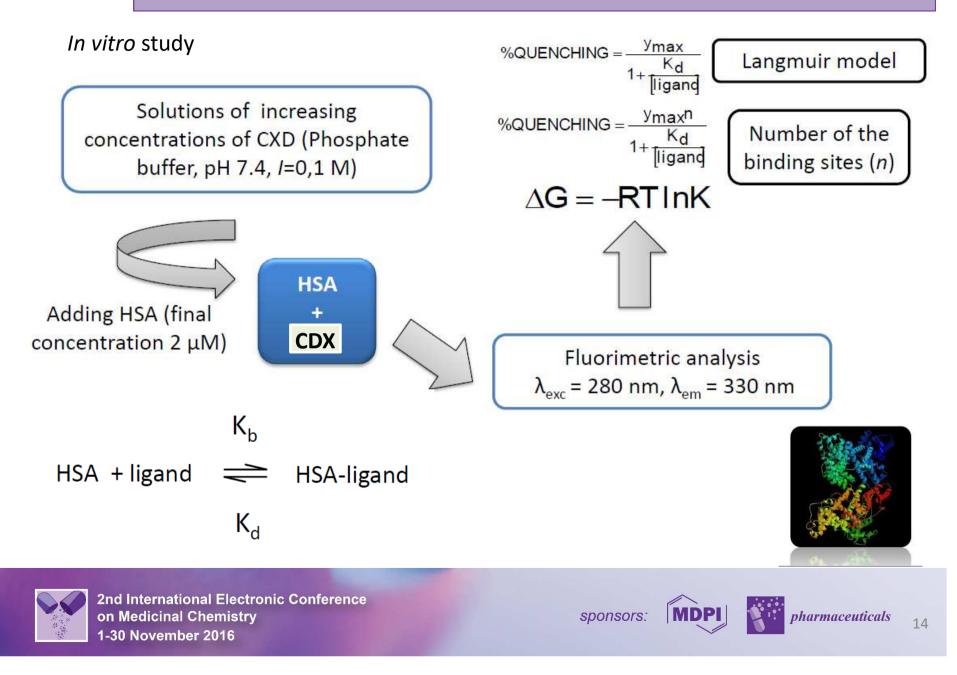
2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

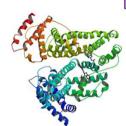
sponsors: MDPI

INHIBITION OF CYCLOOXYGENASES

COX-1 and COX-2 inhibitory effects of CDXs						
and the second	CDX	COX-1	COX-2	Sol Carlo		
COX-1	(S)-XEGOL2	87.6 ± 2.1	80.1 ± 12.8	U-syst		
C0A-1	(R)-XEGOL2	79.6 ± 5.0	84.7 ± 5.7	COX-2		
	(<i>S</i>)-XEVOL	82.9 ± 5.2	85.7 ± 4.5			
	(R)-XEVOL	66.8 ± 1.6	73.2 ± 0.4			
	(<i>R</i>)-X2A1P	75.2 ± 9.0	75.1 ± 7.2			
	(<i>S</i>)-X2A1P	91.7 ± 10.7	93.4 ± 11.4			
	Indomethacin	83.2 ± 6.4	80.7 ± 9.5			

Results are given as % of inhibition and are expressed as mean ± standard deviation of two independent experiments.


The concentration of CDXs was 20 μ mol.L⁻¹. Indomethacin 1 μ mol.L⁻¹ was used as positive control.



ALBUMIN BINDING

Results of the binding parameters

CDX	K _d (μM)	Y _{max}	n	∆G binding (Kcal/mol) 25 °C
(S)-XEGOL2	23.6 ± 0.8	105.3 ± 0.4	1	-1.9 ± 0.1
(R)-XEGOL2	61.8 ± 6.5	109.6 ± 1.6	1	-2.4 ± 0.2
(S)-XEVOL	24.7 ± 1.1	107.4 ± 5.4	1	-1.9 ± 0.1
(R)-XEVOL	29.2 ± 0.9	108.2 ± 0.2	1	-2.0 ± 0.1
(<i>R</i>)-X2A1P	26.4 ± 1.2	113.2 ± 1.4	1	-1.9 ± 0.1
(<i>S</i>)-X2A1P	31.4 ± 2.0	116.2 ± 0.6	1	-2.0 ± 0.2

 K_{d} (μ M) < 100 μ M

2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

sponsors:

pharmaceuticals

DOCKING STUDIES

Ligands

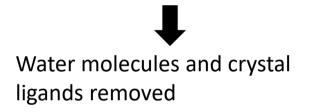
CDXs and positive controls

Drawn and minimized

Decoys and known ligands

From DUD - *a directory of useful decoys*

Negative controls


NCI compound database - based on structural parameters of CDXs

Flexible and adaptable

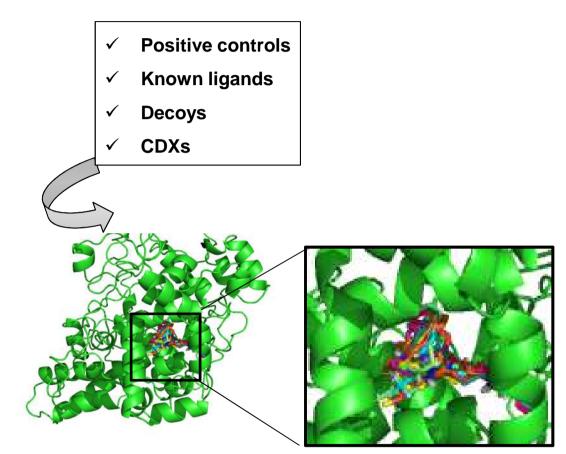
Targets

Protein Data Bank of Brookhaven

ovine COX-1 (PDB code: 3n8x)
murine COX-2 (PDB code: 1cx2)
human albumin (PDB code: 2bxg)

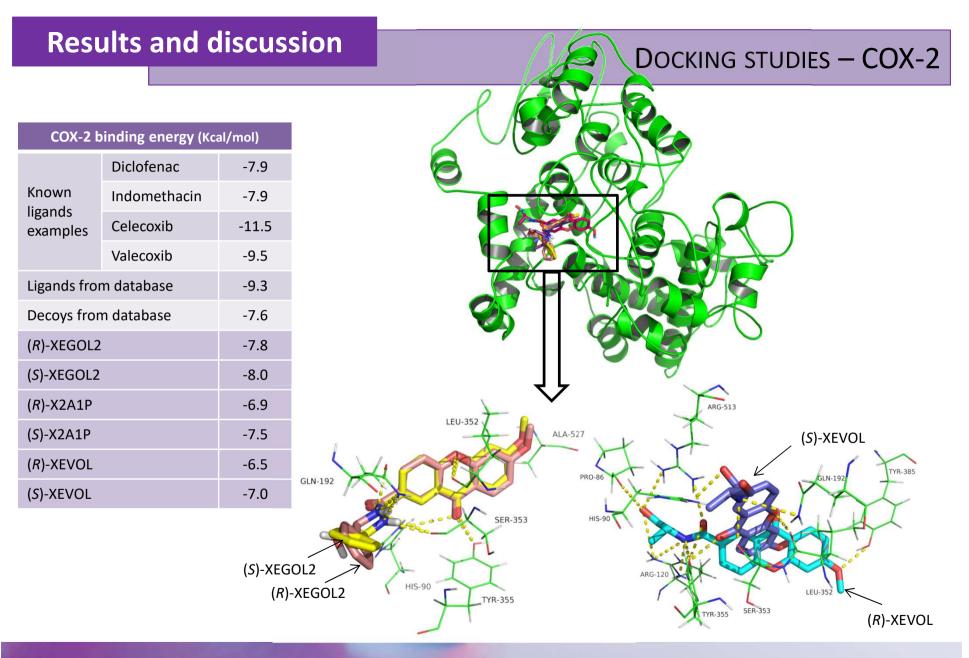
Lowest binding energy docking poses of each compound were chosen

AutoDock Vina


2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

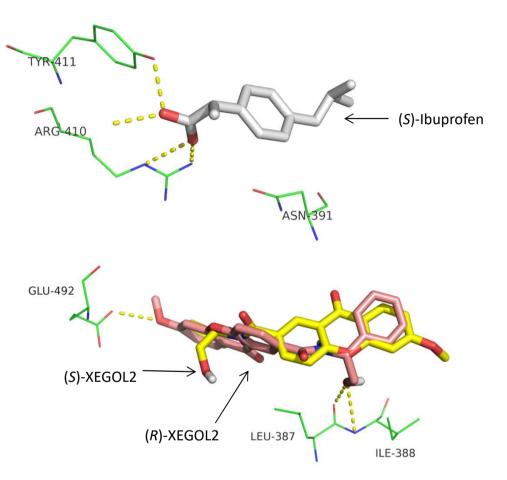
sponsors:

Rigid units

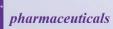

COX-1 binding energy (Kcal/mol)				
	Diclofenac	-6.1		
Known ligands	Indomethacin	-5.1		
	Naproxen	-7.8		
	Piroxicam	-5.2		
Ligands from databas	-7.8			
Decoys from databas	-7.3			
(R)-XEGOL2	-4.2			
(S)-XEGOL2	-4.5			
(<i>R</i>)-X2A1P	-5.3			
(S)-X2A1P	-5.6			
(R)-XEVOL	-3.4			
(S)-XEVOL	-5.4			

2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

pharmaceuticals 17



2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016


DOCKING STUDIES – ALBUMIN

Albumin binding energy (Kcal/mol)				
	Azaprozone	-5.9		
	Diazepam	-7.1		
1 Constanting	Fusidic acid	-5.8		
Known	Ibuprofen	-7.3		
ligands	lophenoxid acid	-4.4		
	Naproxen	-7.9		
	Warfin	-8.5		
(R)-XEGOL2		-7.3		
(S)-XEGC	-7.0			
(<i>R</i>)-X2A1I	-7.2			
(S)-X2A1	-7.0			
(R)-XEVC	-7.2			
(S)-XEVO	-7.2			

2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

Conclusions

Considering the inhibition of cyclooxygenases (COX-1 and COX-2):

- all the CDXs evaluated exhibited COX-1 and COX-2 inhibition potential in *in vitro* assays,
- the inhibitory effects were very similar for the same enantiomeric pair as well as for both COXs,
- no significative difference was found between known ligands and decoys docking scores on COX-1; therefore, no reliable conclusions can be taken from test ligands binding affinity to COX-1,
- XEGOL2 enantiomeric pair is predicted to show more affinity towards COX-2, presenting docking scores similar to known ligands, such as diclofenac and indomethacin.

Considering the HSA binding affinity:

- all CDXs demonstrated to bind with high affinity to HSA potential in *in vitro* assays,
- XEGOL2 enantiomeric pair exhibited enantioselectivity,
- *in silico* studies CDXs confimed that they bind to albumin serum protein, as they have docking scores similar to positive controls such as ibuprofen and diazepam.

Acknowledgments

This research was partially supported by the Structured Program of R&D&I INNOVMAR –Innovation and Sustainability in the Management and Exploitation of Marine Resources (reference NORTE-01-0145-FEDER-000035, Research Line NOVELMAR), funded by the Northern Regional Operational Programme (NORTE2020) through the European Regional Development Fund (ERDF) and by Foundation for Science and Technology (FCT) and COMPETE under the projects PTDC/MAR-BIO/4694/2014 (POCI-01-0145-FEDER-016790) and COXANT–CESPU- 2016.

UNIÃO EUROPEIA

Fundo Europeu de Desenvolvimento Regional

2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

sponsors:

pharmaceuticals