Josué Jiménez,^a Alejandro Villacampa,^a Antonia R. Agarrabeitia,^a Florencio Moreno,^a Beatriz L. Maroto,^a Jorge Bañuelos,^b Íñigo López Arbeloa,^b María J. Ortiz,^a Santiago de la Moya^a

^aDepartamento de Química Orgánica I. Facultad de Ciencias Químicas. Universidad Complutense de Madrid. Ciudad Universitaria s/n, 28040 Madrid, Spain. ^bDepartamento de Química Física, Universidad del País Vasco UPV/EHU, Aptdo. 644, 48080 Bilbao, Spain.

E-mail: santmoya@ucm.es, belora@ucm.es, belora@ucm.es, belora@ucm.es, belora@ucm.es, belora@ucm.es, belora@ucm.es, belora@ucm.es)

Introduction and background

Excitation Energy Transfer (EET) Cassettes

Advanced materials for photonic technologies:

- Solar harvesting
- Fluorescence microscopy
- Biomolecular probing

Introduction and background

Modulable organic fluorophores

- High molar absorption coefficients (ϵ)
- High fluorescence quantum yields (ϕ)
- Sharp fluorescence peaks

Easily derivatizable

APPLICATIONS

Development of photonic tools:

- bioimaging
- chemosensing
- lasing

Introduction and background

Small Stokes shifts

- Reabsorption of emitted light
- Effects from excitation light scattering

Development of Energy Transfer Cassettes with large pseudo-Stokes shifts

Sánchez-Carnerero, E. M.; Gartzia Rivero, L.; Moreno, F.; Maroto, B. L.; Agarrabeitia, A. R.; Ortiz, M. J.; Bañuelos, J.; López-Arbeloa, I.; de la Moya, S. *Chem. Commun.* **2014**, *50*, 12765.

Objectives

Fluorophores with medical applications red/NIR region

biological window (650 -1000 nm):

- Minimize autofluorescence
- Minimize absorption by water, tissues and cells
- Less light scattering

Deeper penetration by incident light

Objectives OAc CN F^B/F B F. Γ PM650 PM605 λ_{flu} (hexane) = 561.5 λ_{flu} (hexane) = 599.5 ϕ (hexane) = 0.36 ϕ (hexane) = 0.74 red emission red emission OAc CN **Cassette**? **Cassette?** -N、N≈ O^{•B,}′O 0[•]B[·]/-

Results

-N、_N≍ O^{•B,}∕O

4

ICT

Development of molecular cassettes for the excitation energy transfer in the red region of the spectrum

	BODIPY	solvent	λ_{ab}	ε _{max} ·10 ⁻⁴	λ _{fl} (nm)	Δv _{St}
Photonhysical			(nm)	(M ⁻¹ cm ⁻¹)		(cm⁻¹)
properties	PM650	<i>c</i> -hexane	589.5	5.3	599.5	285
		acetone	588.0	3.5	606.0	505
	3	<i>n</i> -hexane	587.0	3.6	**	**
Or B. O		acetone	587.5	3.1	**	**
	PM605	<i>n</i> -hexane	547.5	8.3	561.5	455
		acetone	542.0	7.1	559.0	560
3	4	<i>n</i> -hexane	549.5	5.6	579.5	940
OAc		acetone	545.5	5.3	563.5	585

*Fluorescence deactivation by ICT due to the strongly electron-withdrawing cyano group. **No signal was detected.

High deactivation of the fluorescence!!

Φ

0.36*

0.11*

**

**

0.74

0.70

0.13

0.011

Intramolecular Charge Transfer (ICT): From electron rich *O*-BINOL to electron poor BODIPY

Results

Photophysical properties

.OAc

ICT

-N___N 0^{• B,}/0

4

Br.

Br.

6

Development of molecular cassettes for the excitation energy transfer in the red region of the spectrum

<u>Results</u>	BODIPY	solvent	λ_{ab}	ε _{max} ·10 ⁻⁴	λ _{fl} (nm)	Δv _{st}	Φ
			(nm)	(M ⁻¹ cm ⁻¹)		(cm ⁻¹)	
Photophysical	PM650	<i>c</i> -hexane	589.5	5.3	599.5	285	0.36
properties		acetone	588.0	3.5	606.0	505	0.11
	3	<i>n</i> -hexane	587.0	3.6	-	-	
		acetone	587.5	3.1	-	-	-
	5	<i>n</i> -hexane	589.5	4.9	603.5	395	0.25
		acetone	591.0	4.4	619.0	765	0.02
	PM605	<i>n</i> -hexane	547.5	8.3	561.5	455	0.74
5		acetone	542.0	7.1	559.0	560	0.70
_OAc	4	<i>n</i> -hexane	549.5	5.6	579.5	940	0.13
		acetone	545.5	5.3	563.5	585	0.011
	6	<i>n</i> -hexane	552.5	6.1	575.0	710	0.60
$r \rightarrow 0$ $Br \rightarrow 0$		acetone	549.0	6.0	572.0	730	0.45

High improvement of the fluorescence!!

Less deactivation by ICT

Results

n-hexane

Conclusions

Effcient EET cassette with red emission