

1st International Electronic Conference

on Water Sciences

15-29 November 2016 chaired by Prof. Dr. Wilhelm Püttmann

Evolution of Low Temperature Desalination Process

Veera Gnaneswar Gude

Outline of the Presentation

- 1. Energy requirements for desalination
- 2. New desalination technology
- 3. Working principle
- 4. Phase I: Theoretical studies
- 5. Phase II: Pilot scale studies
- 6. Phase III: Field scale studies
- 7. Conclusions

Energy for Desalination

Minimum Theoretical Energy Requirement for Production of 1 kg of Freshwater is 2.5 kJ (Spiegler, 1977)

Process		Multi-Effect Solar Still (MESS)	Multi Stage Flash Distillation (MSF)	Multi Effect Distillation (MED)	MVC	MED- TVC	Reverse Osmosis	ED
Energy Requirements	Thermal energy (kJ/kg)	1500	250-300	150-220	_	220-240	_	_
	Electrical energy (kWh/m ³)	0	3.5-5	1.5-2.5	11-12	1.5-2	5-9	2.6-5.5
	Total electric equivalent (kWh/m ³)	0	15-25	8-20	11-12	21.5-22	5-9	2.6-5.5
GHG Emissions kg CO ₂ /m ³ H ₂ O	Maximum value	0	24	19.2	11.5	21	8.6	5.3

Research Goals and Objectives

Phase I: Theoretical Studies

• Study **New**, energy-efficient, self-sustainable, low temperature desalination (LTD) system

• Study and evaluate the performance of LTD system using low grade solar/waste energy (heat rejected by refrigeration system)

• Application of renewable energy sources such as solar collectors, Photovoltaics, PV/T collectors and Geothermal water sources

New, Low-Temperature Desalination System

- Continuous process (Energy-efficient, lower specific energy
- requirement)
- Near vacuum pressures (natural means of gravity & barometric
- pressure head- Natural Vacuum)
- Lower temperature (40-50 0C < Conventional)
- Renewable/Low Grade energy Source dependent
- No mechanical pumping
- No cooling

Thermodynamic Justification

Generic Phase-Change Desalination Process

Thermodynamic Analysis (FLT)

$$Ein = Eout$$

$$m_s h_s + Q_i = m_f h_f + (m_s - m_f)h_b + m_f h_L + Q_L$$

$$\frac{m_f}{m_s} = \frac{\left[\frac{(Q_i - Q_L)}{m_s} + (h_s - h_b)\right]}{(h_f - h_b + h_L)}$$

 Q_i = variable kJ/hr, Fixed feed rate, 1 kg/hr

 $Q_i = 1000 \text{ kJ/hr}$, variable feed rate, kg/hr

Physical Principle behind Natural Vacuum

Desalination Using Low Grade Waste Heat

Summary of Results (Theoretical Study)

Energy Source	Mode of operation	Heat energy required (kJ/kg freshwater)	Mechanical energy required (kJ/kg freshwater)	Total Energy required (kJ/kg freshwater)
ARS configuration	Continuous	194	14	208
Solar collectors	Batch	3118	4.1	3122.1
PV/T collectors	Batch	3118	4	3122
Geothermal source*	Continuous	2934	144	3078

Research Goals and Objectives

Phase II: Pilot Scale Studies

- Develop and Demonstrate the feasibility of low temperature desalination unit in continuous mode of operation using the power from electric grid
- Demonstrate the feasibility of low temperature desalination unit using renewable energy sources (direct solar and photovoltaic energy) through pilot scale study
- Feasibility study of reclaiming potable quality water from the effluent of wastewater treatment plant (City of Las Cruces, NM) by LTD system

Experimental Setup

LTD Process

Objectives:

- To demonstrate the feasibility of LTD system using Renewable energy
- To study use of Different Combinations of Energy

Method:

- Heat source: Solar/Photovoltaic Energy
- Withdrawal rate: 0.250 kg/hr
- Open top during Day time
- Evaporation temperatures: 45-60 °C
- Summer conditions

Experimental Results

Prototype Des@LT Unit powered by RES

Experimental Study - Phase II: Summary

- Reduced Start up time, Reduced response time for Freshwater demand
- Reduced Specific Energy Requirements by LTD systems

Experiment	Description	Mode of Operation	Specific Energy Requirement (kJ/kg)
Case 1	Utilization of direct solar energy	Batch	4157
Case 2	Utilization of direct solar energy with a reflector	Batch	3118
Case 3	Solar energy during sunlight hours, photovoltaic energy during non-sunlight hours	Continuous	2926
Case 4	Solar and photovoltaic energy together	Batch	3325

Wastewater Effluent Reclamation

Water quality measure	WWTP effluent	Product water	US EPA Standards
BOD (mg/L)	9.7	-	
TSS (mg/L)	5.1	< 1	
TDS (mg/L)	727	21	500
Nitrates/nitrites(mg/L)	2.4	< 0.1	1
NH ₃ (mg/L)	23.2	< 0.5	
Chlorides (mg/L)	0	0	4
Coliform (cfu/100)	77	< 1	0
pН	7.1	7.1	6.5-8.5

Phase III: Field Studies

Objectives:

- To demonstrate low temperature desalination (LTD) unit at freshwater production rates (75-100 gal/d)
- To demonstrate two-stage low temperature desalination unit
- To study the process variables such as heat and mass transfer coefficients, areas, scaling and fouling issues
- To determine the specific energy requirements for a twostage low temperature desalination (LTD) process

Advantages of Low Temperature Desalination

- Thermodynamic efficiency
 - lower heat fluxes/temperature differentials; better thermal efficiency, lower heat losses to the environment
- Low corrosion and scaling rate
 - safe to use plastic pipes & aluminum plates;
 - temperatures well below the saturation limits of problem scalants
- Flexibility and reliability
 - short start-up, less time for heating up, freshwater demand
 - solid construction, proven equipment, low maintenance

Low energy costs: enables use of low cost heat sources which would otherwise be lost to environment

ex: stack gases, cooling water streams and low pressure exhaust steam

Conclusions

- Experimental studies demonstrate the feasibility of using direct solar energy and photovoltaic energy
- Lower energy: Specific energy requirements for single effect is 2926 kJ/kg
- Two-stage LTD process successfully demonstrated
- Two-stage energy requirements about 1600 kJ/kg
- The system does not require any mechanical pumping except occasional removal of accumulated gases
- High quality distillate (TDS < 50 ppm)
- High exergy efficiency (quality of energy completely utilized)
- Multistage configuration can improve both energy and economic budget of the process