QSTR STUDY OF ORGANIC PHOSPHONIUM SALTS BY MLR

SIMONA FUNAR-TIMOFEI, ADRIANA POPA

Institute of Chemistry of the Romanian Academy 24 Mihai Viteazul Bvd., 300223 Timisoara, Romania e-mail: timofei@acad-icht.tm.edu.ro

INTRODUCTION

- Polyethylene glycols (PEGs) are polymers of ethylene oxide with the generalized formula HO(CH2CH2 O)*n*-H, "*n*" indicating the average number of oxyethylene groups are used as cleansing agents, emulsifiers, skin conditioners, and humectants [1].
- Many insoluble disinfectants reported are phosphonium salts grafted on polymer [2]

[1]. Fruijtier-Polloth, C. Toxicology 2005; 214: 1–38.
[2]. Kanazawa, A.; Ikeda, T.; Endo T. J. Polym. Sci. Pol. Chem. 1994; 32: 1997-2001.

INTRODUCTION

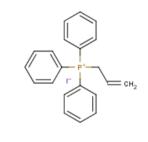
- Polymeric disinfectants have important applications, such as: antifouling coatings and fiber finishing, drugs with prolonged activity and less toxicity, water and air disinfection [3].
- According to the toxicity scale of Hodge and Steaner the poly(oxyethylene)s functionalized with quaternary phosphonium end groups can be considered as low toxic compounds [4]

[3]. Kanazawa, A.; Ikeda, T.; Endo, T. J. Appl. Polym. Sci. 1994; 53: 1237-1244. [4]. Popa, A. ; Trif, A. ; Curtui, V.G. ; Dehelean, G. ; Iliescu, S. ; Ilia G. Phosphorus Sulfur. 2002; 177: 2195-2196.

AIM:

 OD, 1D and 2D descriptors of organic phosphonium salts were related to their logarithm of oral mouse LD₅₀ values to find out structural features which influence their toxicity.

METHODS


 Twenty eight quaternary phosphonium salts derivatives with known toxicity, the logarithm of the lethal oral dose for mouse LD₅₀ (taken from RTECS Database, MDL Information Systems, Inc. 14600 Catalina Street San Leandro, California U.S.A. 94577, http://www.ntis.gov/products/types/databases/rte cs.asp) were used

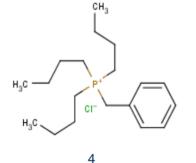
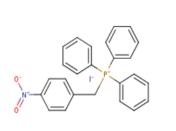
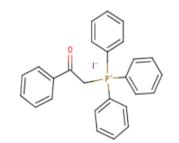
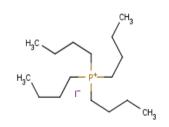

Phosphonium salt training structures

Table 1. Name and the logarithm of the LD50 values of phosphonium salt structures


No	Phosphonium salt name	No	Phosphonium salt name
1	Phosphonium, acetonyltriphenyl-,	16	Phosphonium, (2,4-
	iodide		dimethylbenzyl)tributyl-, chloride
2	Phosphonium, tributyl-2-propen-1-yl-	17	Phosphonium, (2,4-
	, chloride		dichlorobenzyl)triphenyl-, iodide
5	Phosphonium, benzyltriphenyl-,	18	Phosphonium, (2,4-
	iodide		dichlorobenzyl)tri(p-tolyl)-, chloride
6	Phosphonium, bis(p-	19	Phosphonium,
	butylamino)benzylphenyl-, iodide		(dichloromethyl)tripiperidino-,
-		20	perchlorate
7	Phosphonium, bis	20	Phosphonium,
	(t-butylamino)methylphenyl-, iodide		(ethoxycarbonylmethyl)triphenyl-, bromide
9	Phosphonium,	21	Phosphonium,
	(p-bromomethylbenzyl)triphenyl-, bromide		(2-ethoxypropenyl)triphenyl-, iodide
10	Phosphonium, butyltriphenyl-,	22	Phosphonium, ethyltriphenyl-,
	bromide		iodide
11	Phosphonium, butyltriphenyl-, iodide	23	Phosphonium,
			(o-methylbenzyl)triphenyl-, bromide
12	Phosphonium,	24	Phosphonium, p-nitrobenzyltributyl-
	carboxymethyltriphenyl-, chloride		, iodide
13	Phosphonium,	27	Phosphonium,
	(p-chloromethylbenzyl)tris		(3-phenoxypropyl)triphenyl-,
	(dimethylamino)-, chloride		bromide
14	Phosphonium, chloromethyltriphenyl-		
	, chloride		


Phosphonium salt test structures



Br Br

METHODS

- Phosphonium salts structure (modeled as cations) was built by the ChemOffice package (ChemOffice 6.0, CambridgeSoft.Com, Cambridge, MA, U.S.A.) and energetically optimized using the molecular mechanics approach.
- Twenty-two types of descriptors were calculated by the Dragon software (Dragon Professional 5.5/2007, Talete S.R.L., Milano, Italy)

METHODS

- Multiple linear regression (MLR) calculations were performed by the STATISTICA (STATISTICA 7.1, Tulsa, StatSoft Inc, OK, USA) and MobyDigs [5] programs.
- The goodness of prediction of the MLR models was checked by the Akaike Information Criterion (AIC), the multivariate K correlation index, Yscrambling and external validation parameters.

[5]. Todeschini, R.; Consonni, V.; Mauri, A.; Pavan, M. MobyDigs: software for regression and classification models by genetic algorithms, in: 'Nature-inspired Methods in Chemometrics: Genetic Algorithms and Artificial Neural Networks'. (Leardi R., Ed.), Chapter 5, Elsevier, 2004, pp. 141-167.

- Variable selection was carried out by the genetic algorithm included in the MobyDigs program, using the RQK fitness function [6], with leaveone-out crossvalidation correlation coefficient as constrained function to be optimised, a crossover/mutation trade-off parameter T = 0.5 and a model population size P = 50.
- The leave-one out cross-validation procedure was employed for the internal validation of models.

[6]. Todeschini R., Consonni V., Mauri A., Pavan M. Anal. Chim. Acta 2004; 515: 199-208.

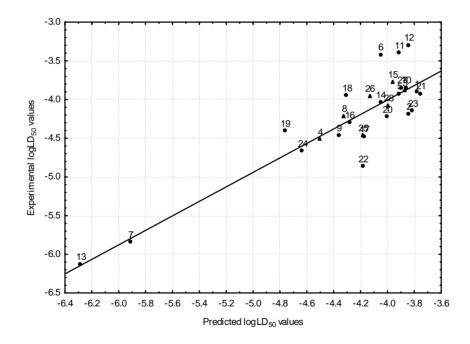
Table 2. MLR results (selection)*

No	Descriptors	r ²	q_{LOO}^2	q_{boot}^2	q ² _{ext}	$r_{\rm Y-scrambling}^2$	$q_{Y-scrambling}^2$	AIC	Kx	Кху	SDEP	SDEC	F	S
1	P2e													
	HATS3m HATS6m													
	REIG	0.863	0.782	0.707	0.951	0.237	-0.498	0.138	0.26	0.40	0.321	0.254	25.26	0.291
	PW5													
	RDF030u RDF045u													
2	Mor05e	0.862	0.763	0.717	0.690	0.379	-0.488	0.139	0.47	0.56	0.334	0.255	24.9	0.293
	E3m													
	HATS3m H1e													
3	R7v+	0.860	0.777	0.712	0.757	0.341	-0.302	0.141	0.29	0.45	0.325	0.257	24.57	0.294
	P2p													
	HATS3m HATS6m													
4	REIG	0.856	0.768	0.684	0.943	0.28	-0.39	0.145	0.28	0.42	0.331	0.261	23.68	0.299
	PW5													
	RDF045u Mor05e													
5	HATS6m	0.855	0.749	0.690	0.699	0.338	-0.226	0.146	0.45	0.54	0.344	0.261	23.62	0.299
	P2e													
	HATS6m REIG													
6	R4m+	0.854	0.794	0.718	0.911	0.314	-0.32	0.146	0.27	0.37	0.312	0.262	23.46	0.3

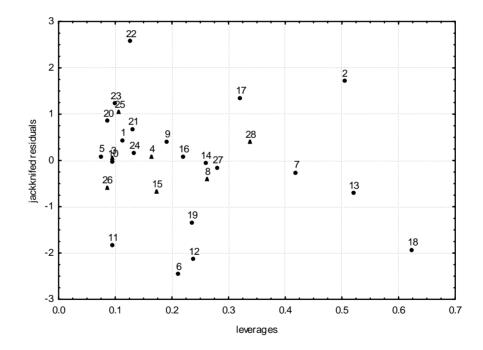
* r^2 – correlation coefficient, SDEP – standard deviation error in prediction (RMSE_{test}), SDEC – standard deviation error in calculation (RMSE_{training}), F- Fischer test, s – standard error of estimate, AIC - Akaike Information Criterion, the multivariate K correlation index (Kx and Kxy), Y-scrambling variables ($r_{Y-scrambling}^2$ and $q_{Y-scrambling}^2$), q_{ext}^2 - external q^2 , q_{boot}^2 - bootstrapping parameter, q_{LOO}^2 - leave-one out cross-validation parameter

 Starting from the descriptor matrix containing all variables, following descriptors were found to be significant and were included in the final MLR models: topological, walk and path count, connectivity indices, information indices, 2D autocorrelations, edge adjacency indices, topological charge indices, eigenvalue-based indices, RDF descriptors, 3D-MoRSE, WHIM descriptors, Getaway descriptors, and molecular properties

• Model 1 (Table 2) was selected as the best single model:


 $\log LD_{50} = 2.36(\pm 0.99) + 2.36(\pm 1.31)P2e - 12.37(\pm 2.88)HATS3m + 4.87(\pm 1.15)HATS6m - 11.28(\pm 1.6)REIG$

$$N_{\text{training}} = 21 \text{ N}_{\text{test}} = 7$$


$$r_{\text{training}}^2 = 0.863 q_{\text{LOO}}^2 = 0.782 q_{\text{ext}}^2 = 0.951 r_{\text{Y-scrambling}}^2 = 0.251 q_{\text{Y-scrambling}}^2 = -0.348$$

$$K_{\text{XY}} = 0.402 \text{ K}_{\text{X}} = 0.258 \text{ RMSE}_{\text{training}} = 0.254 \text{ RMSE}_{\text{test}} = 0.321$$

 where P2e-2nd component shape directional WHIM index / weighted by atomic Sanderson electronegativities, HATS3m-leverage-weighted autocorrelation of lag 3 / weighted by atomic masses, HATS6m-leverage-weighted autocorrelation of lag 6 / weighted by atomic masses; REIG-first eigenvalue of the R matrix

Figure 1. Experimental *versus* predicted logLD₅₀ values of the final MLR model 1 (Table 2). Training set is marked by circles, test set marked by blue triangles.

Figure 2. Williams plot: jackknifed residuals *versus* leverages of the MLR model 1 (Table 2). Training set is marked by circles, test set marked by triangles (leverage control value of 0.714)

CONCLUSIONS

- The quaternary phosphonium salts toxicity was modeled by MLR combined with genetic algorithm for variable selection, with acceptable statistical results
- Electronic distribution is very important for the phosphonium salts toxicity.
- Steric factors of phosphonium salts can be considered to influence the toxicity.