



# SORPTION OF DIRECT DYES FROM AQUEOUS SOLUTION ONTO A SYNTHETIC ADSORBENT. KINETIC STUDY

### <u>Simona Gabriela Muntean</u><sup>1</sup>, Sergiu Coseri<sup>2</sup>, Georgeta Simu<sup>3</sup>, Oana Paska<sup>1</sup>

<sup>1</sup>Institute of Chemistry Timisoara of Romanian Academy, 24 B-dul Mihai Viteazul, 300223 Timisoara, Romania; <sup>2</sup>"Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi, 700487, Romania <sup>3</sup>University of Medicine and Pharmacy "V. Babeş" Timişoara, Faculty of Pharmacy, Eftimie Murgu 2, 300041 Timişoara, Romania e-mail: sgmuntean@acad-icht.tm.edu.ro

# Introduction

Industries such as textile, paper, plastics, etc., use great quantities of water, and chemical substances, for coloring the manufactured articles, and discharge large amounts of wastewater during industrial processing.

The discharge of coloured wastewater is a major environmental concern (can produce serious pollution problems) due to their poor biodegradability, carcinogenicity and toxicity.

The adsorption process provides an attractive alternative for the treatment of dye contaminated waters because of its simplicity, selectivity and efficiency.



To determine the efficiency of copolymer microbeads, as adsorbent for removal of direct dyes from aqueous solutions

To study the influences of process variables: contact time, and initial concentration on the adsorption.

The kinetics study of the adsorption of direct dyes onto adsorbent.

# Experimental

#### Molecular structure of the studied direct dyes



OD



GD

#### The chemical structure of investigated copolymer (StDVBNMe)

R: styrene-divinylbenzene copolymer

# Method

#### **Experimental study**



- Dye concentration: 10<sup>-5</sup> ÷ 10<sup>-4</sup> M;
- Adsorbent dose 100mg/100mL;
- Temperature: 25°C;
- Solution pH: 7.11.

#### The amount of dye adsorbed

$$q_t = \frac{(C_0 - C_t) \cdot V}{W}$$

 $q_t$ : amount of dye adsorbed onto the copolymer unit at time t (mg/g),  $C_0$  and  $C_t$ : dye concentration in solution at initial time, and at time t (mg/L), V: solution volume (L), W: amount of copolymer (g)

#### The percentage of dye removal ( $\eta$ )

$$\eta = \frac{C_0 - C_e}{C_0} \times 100$$

C<sub>e</sub>: dye concentration at equilibrium (mg/L).

# **Results and Discussions**

### Characterization of copolymer microbeads



Fig. 1. Samples of: (a) *StDVBNMe* ; (b) *OD-StDVBNMe;* (c) *StDVBNMe*.



Fig. 2. SEM images for: (a) StDVBNMe; (b) OD - StDVBNMe; (c) - StDVBNMe.

#### Effect of initial dye concentration and agitation time



Fig. 3. Effect of contact time and dye concentration on the percentage removal of dyes (a. *OD*, b. *GD*). *Conditions*: pH 7.11; *T*= 25±1°C, agitating speed 250rpm.

| Dye | Dye concentration<br>(mg/L) | q <sub>e</sub><br>(mg/g) | t <sub>e</sub><br>(min) | η<br>(%) |
|-----|-----------------------------|--------------------------|-------------------------|----------|
| OD  | 8                           | 7.66                     | 35                      | 99.05    |
|     | 40                          | 39.11                    | 75                      | 98.13    |
|     | 80                          | 77.32                    | 90                      | 97.99    |
| GD  | 10                          | 9.07                     | 65                      | 98.53    |
|     | 45                          | 42.02                    | 130                     | 89.47    |
|     | 90                          | 81.48                    | 205                     | 88.47    |

### **Adsorption kinetics**



 $q_{e}$ , q = amount of dye adsorbed on adsorbent at equilibrium, and any time t, respectively (mg g<sup>-1</sup>).  $k_{1}$  = the Lagergren rate constant of first order adsorption (min<sup>-1</sup>)

 $k_2$  = the equilibrium rate constant of second-order adsorption (g mg<sup>-1</sup> min<sup>-1</sup>)

### Fig. 4. First-order-kinetics plots of the experimental data for the adsorption of *OD* and *GD* onto StDVBNMe





#### Fig. 5. Second order plots for the adsorption of *OD* and *OD* onto StDVBNMe





### Table 4. Comparison of experimental and calculated *qe* values; first order and second order adsorptionrate constant for the adsorption of *OD* and *GD* dyes

| Dye | Initial dye<br>concentration<br>(mg/L) | q <sub>e</sub> (exp)<br>(mg/g) - | First order                     | First order kinetic model                                   |                                 | Second order kinetic model                               |  |
|-----|----------------------------------------|----------------------------------|---------------------------------|-------------------------------------------------------------|---------------------------------|----------------------------------------------------------|--|
|     |                                        |                                  | q <sub>e</sub> (calc)<br>(mg/g) | <b>k<sub>1</sub></b> × 10 <sup>2</sup> (min <sup>-1</sup> ) | q <sub>e</sub> (calc)<br>(mg/g) | <b>k<sub>2</sub></b> × 10 <sup>2</sup><br>(g mg-1 min-1) |  |
|     | 8                                      | 7.66                             | 2.09                            | 5.645                                                       | 7.72                            | 11.47                                                    |  |
| OD  | 40                                     | 39.11                            | 20.65                           | 2.303                                                       | 41.27                           | 0.244                                                    |  |
|     | 80                                     | 77.32                            | 35.6                            | 2.309                                                       | 80.26                           | 0.134                                                    |  |
|     | 10                                     | 9.07                             | 6.31                            | 3.418                                                       | 9.84                            | 0.773                                                    |  |
| GD  | 45                                     | 42.02                            | 28.95                           | 1.985                                                       | 45.81                           | 0.096                                                    |  |
|     | 90                                     | 81.48                            | 79.47                           | 1.808                                                       | 83.81                           | 0.026                                                    |  |

### Conclusions

- The removal of two dyes namely OD, and GD from aqueous solution by StDVBNMe was found to be effective.
- The StDVBNMe microbeads can by used as a adsorbent in adsorption process in low costs working conditions (room temperature, pH ~ 7).
- The adsorption process for OD, and OD dyes removal, can be described by the pseudo-second order kinetic model.



# Thank you for your attention!

