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Abstract 

Herein we present results of a Quantitative Structure-Activity Relationship (QSAR) studies to 
classify and design, in a rational way, new antitrypanosomal compounds by using non-stochastic and 
stochastic bond-based quadratic indices. A data set of 440 organic chemicals, 143 with 
antitrypanosomal activity and 297 having other clinical uses, is used to develop QSAR models based 
on Linear Discriminant Analysis (LDA). Non-stochastic model correctly classifies more than 93% 
and 95% of chemicals in both training and external prediction groups, respectively. On the other 
hand, the stochastic model shows an accuracy of about the 87% for both series. As an experiment of 
virtual lead generation, the present approach is finally satisfactorily applied to the virtual evaluation 
of 9 already synthesized in house compounds. The in vitro antitrypanosomal activity of this series 
against epimastigote forms of Trypanosoma cruzi is assayed. The model is able to predict correctly 
the behaviour for the majority of these compounds. Four compounds (FER16, FER32, FER33 and 
FER 132) showed more than 70% of epimastigote inhibition at a concentration of 100µg/mL 
(86.74%, 78.12%, 88.85% and  72.10%, respectively) and two of these chemicals, FER16 (78.22% of 
AE) and FER33 (81.31% of AE), also showed good activity at a concentration of 10µg/mL. At the 
same concentration, compound FER16 showed lower value of cytotoxicity (15.44%), and compound 
FER33 showed very low value of 1.37%. Taking into account all these results, we can say that these 
three compounds can be optimized in forthcoming works, but we consider that compound FER33 is 
the best candidate. Even though none of them resulted more active than Nifurtimox, the current 
results constitute a step forward in the search for efficient ways to discover new lead 
antitrypanosomals. 
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1. Introduction 

Parasitic diseases affect hundreds of millions of people worldwide and result in significant 

mortality and devastating social and economic consequences. Nevertheless, most of the drugs 

available to treat these diseases are decades old and are frequently limited in efficacy, plagued by 

severe side effects and poor patient compliance, or hamstrung by drug resistance. Few, if any, of the 

currently available drugs for parasitic diseases would pass through even a discovery-stage screening 

funnel today, letting apart preclinical and clinical development (Renslo and McKerrow, 2006). The 

current state of chemotherapeutics for parasitic diseases is particularly bleak for those living in the 

affected regions of the world because of the low economic incentive for drug development and the 

rise of resistant strains (Weisman et al., 2006). These diseases, though globally massive in their 

impact, affect mainly poor people in undeveloped regions of the world. As such, they would never be 

viewed as viable target markets for the pharmaceutical industry, particularly in today’s post-merger 

climate. In parallel, funding for basic research on these organisms and the pathogenesis of the 

diseases they produce has been woefully inadequate compared with funding for diseases of much 

lower prevalence but more direct impact in the developed countries of Europe and North America 

(Renslo and McKerrow, 2006). However, in recent times the Chagas' disease is appearing also in 

countries of the First World due to of immigration, organ donation and blood transfusion. 

Among the parasitic-diseases, protozoa are responsible for a number of illnesses, including 

leishmaniasis, Chagas disease, malaria, schistosomiasis, African trypanosomiasis and 

giardiasis/amebiasis. In this sense, Chagas disease or American trypanosomiasis (caused by 

Trypanosoma cruzi) occupies the third place in the number of deaths per year, after malaria and 

schistosomiasis (Aguirre et al., 2004). It is a major health problem in Latin America, where current 

estimates indicate about 20 million people infected with T. cruzi, almost 100 million in risk of being 

infected and 500,000 new cases reported each year (Prieto et al., 2006). Current chemotherapy against 

Trypanosoma remains unsatisfactory; available drugs are benznidazole and nitrofurans such as 

nifurtimox. The latter has undergone several rumors of discontinuation (Urbina, 2002; Faundez et al., 

2005), probably because of limited markets or the potential risks the pharmaceutical companies may 

incur because of suspicion of long-term toxicity (COSTB9, 1997–2002). Both drugs have significant 

activity in only the acute and short-term chronic phases. Their efficacy, however, is very low in the 

established chronic phase, which is prevalent in Latin America and is considered incurable (Urbina 



and Docampo, 2003). Their efficacy also varies according to geographical areas, mainly because of 

differences in drug susceptibility of different T. cruzi strains (Andrade et al., 1992; Urbina, 2002). 

Screening large chemical libraries to identify compounds with trypanocidal activity has been 

hindered in the past by the lack of efficient screening assays with available assays being labour 

intensive, relying on expensive instrumentation, or requiring radioisotopes (Kaminsky and Brun, 

1993). Descriptor-based virtual screening arises as one interesting option for researchers from 

developing countries to discover, in short time and with low costs, promissory drugs in the fight 

against Chagas (Prieto et al., 2006). In this context, our research group has recently developed a novel 

scheme to generate molecular fingerprints based on the application of discrete mathematics and linear 

algebra theory. The approach [known as TOMOCOMD acronym of TOpological MOlecular 

COMputer Design] (Marrero-Ponce and Romero, 2002; Marrero-Ponce, 2003; Marrero Ponce, 2004; 

Marrero-Ponce et al., 2006c; Casanola-Martin et al., 2007; Marrero-Ponce et al., 2007; Marrero-

Ponce et al., 2008) allows us to perform rational in silico molecular design (selection/identification) 

and Quantitative Structure-Activity/Property Relationship (QSAR/ QSPR) studies. Therefore, this 

scheme has been applied to the prediction of several physical, physicochemical, chemical, 

pharmacokinetical, toxicological as well as biological properties (Marrero-Ponce, 2004; Marrero-

Ponce et al., 2004; Marrero-Ponce et al., 2005a; Casañola-Martin et al., 2006; Marrero-Ponce et al., 

2006b; Marrero-Ponce et al., 2007; Castillo-Garit et al., 2008a; Castillo-Garit et al., 2008b). It was, 

for instance, successfully used in the virtual screening of novel antihelminthic compounds, which 

were then synthesized and evaluated in vivo on Fasciola hepatica (Marrero-Ponce et al., 2005b). 

Other studies for the rational discovery of novel paramphistomicides (Marrero-Ponce et al., 2005c), 

antimalarial (Marrero-Ponce et al., 2005d) and antibacterial (Marrero-Ponce et al., 2006a) compounds 

were also conducted with the TOMOCOMD approach; also studies related to proteomics (Marrero-

Ponce et al., 2005e) and nucleic acid-drug (Marrero Ponce et al., 2005) interactions have been carried 

out. In addition, this method has been extended to consider three-dimensional (3D) features of 

small/medium-sized molecules on the basis of the application of a trigonometric 3D-chirality 

correction factor (Marrero-Ponce and Castillo-Garit, 2005; Castillo-Garit et al., 2006; Castillo-Garit 

et al., 2007; Castillo-Garit et al., 2008c). 

In the present report, bond-based non-stochastic and stochastic quadratic indices are used to find 

classification models that allow the discrimination of antitrypanosomal compounds. This kind of 

approach permits the rational identification of those candidates to be evaluated, which have the 



highest probabilities of being active ones. Following this idea, eight already-synthesized compounds 

were then in silico evaluated and, after that, in vitro assayed against epimastigote forms of 

Trypanosoma cruzi. Cytotoxic studies were also conducted, as selection criterion of compounds to be 

evaluated in further anti-amastigote and in vivo assays. 

2. Materials and Methods 

2.1. Data set for QSAR Study 

The general data set used in this study consists of 440 compounds of great structural variation, 

143 of which are actives and 297 are inactive against trypanosome. The antitrypanosomals considered 

in this study are representative of families with diverse structural patterns and were collected from 

previous publications (Gillmor et al., 1997; Urbina et al., 1998; Bonse et al., 1999; Cerecetto et al., 

2000; Hiyoshi et al., 2000; Werbovetz, 2000; Buckner et al., 2001; Salmon-Chemin et al., 2001; 

Zuccotto et al., 2001; Daunes and D'Silva, 2002; Du et al., 2002; Elhalem et al., 2002; Gilbert, 2002; 

Bal et al., 2003; Buckner et al., 2003; Hamilton et al., 2003; Huang et al., 2003; Urbina et al., 2004) . 

The names of compounds in the database together with their experimental data taken from the 

literature are reported in the Supporting Information (activity data and structures of the 143 anti-

trypanosome agents in Tables S1 and Figures S1, respectively). It is remarkable that the wide 

variability of drugs and mechanisms of action of active compounds in the training and prediction sets 

assures adequate extrapolation power and increases the possibilities of the discovery of new lead 

compounds with novel mechanisms of action, which results one of the most critical aspects in the 

construction of non-congeneric data. Therefore, this dataset provide us with a suitable data matrix for 

investigating the potential of computational tools in ligand-based drug design of trypanocidal agents 

On the other hand, 297 compounds having different clinical uses such as antivirals, 

sedative/hypnotics, diuretics, anticonvulsants, hemostatics, oral hypoglycemics, anti-hypertensives, 

antihelminthics and anticancer compounds as well as some other kinds of drugs were selected for the 

set of inactive compounds through random selection, guaranteeing great structural variability as well. 

All these compounds were taken from the Negwer Handbook (Negwer, 1987) and Merck Index 

(1996)  in which their names, synonyms, and structural formulas can be found. The classification of 

these organic compounds as ’inactive’ (non-antitrypanosomal) does not guarantee that all are truly so; 

some of them may have inhibitory activity toward tyrosinase, which is undetected. This problem can 

be reflected in the results of classification for the series of inactive compounds (Estrada and Peña, 

2000). 



2.2. Computational approach 

The theory of the bond-based quadratic indices used in this study was discussed in detail in an 

earlier publications (Marrero-Ponce et al., 2006c). Specifically, the CARDD (Computed-Aided 

Rational Drug Design) module implemented in the TOMOCOMD Software (Marrero-Ponce and 

Romero, 2002) was used in the calculation of bond-based non-stochastic and stochastic quadratic 

indices. In this study, the properties used to differentiate the molecular atoms are those previously 

proposed for the calculation of the DRAGON descriptors (Kier and Hall, 1986; Todeschini and 

Gramatica, 1998; Consonni et al., 2002), i.e., atomic mass (M), atomic polarizability (P), atomic 

Mullinken electronegativity (K), van der Waals atomic volume (V), plus the atomic electronegativity 

in Pauling scale (G)(Pauling, 1939).  

The bond-based quadratic indices descriptors computed in this study were the following: 

1)   kth (k = 15) total non-stochastic bond-based quadratic indices, not considering and considering 

H-atoms in the molecular graph (G) [qk( w ) and qk
H( w ), respectively]. 

2) kth (k = 15) total stochastic bond-based quadratic indices, not considering and considering H-

atoms in the molecular graph (G) [sqk( w ) and sqk
H( w ), respectively]. 

3)   kth (k = 15) bond-type local (group = heteroatoms: S, N, O) non-stochastic quadratic indices, not 

considering and considering H-atoms in the molecular graph (G) [qkL( w E) and qkL
H( w E), 

correspondingly]. These local descriptors are putative molecular charge, dipole moment, and H-

bonding acceptors. 

4) kth (k = 15) bond-type local (group = heteroatoms: S, N, O) stochastic quadratic indices, not 

considering and considering H-atoms in the molecular graph (G) [sqkL( w E) and sqkL
H( w E), 

correspondingly]. These local descriptors are also putative molecular charge, dipole moment, and 

H-bonding acceptors. 

2.3. Chemometric method 

Linear discriminant analysis (LDA) was performed with software package STATISTICA 

(STATISTICA version. 6.0, 2001). Forward stepwise was fixed as the strategy for variable selection. 

The quality of the models was determined by examining Wilk´s λ parameter (U-statistic), square 

Mahalanobis distance (D2), Fisher ratio (F) and the corresponding p-level (p(F)) as well as the 

percentage, in training and test sets, of global good classification, Matthews’ correlation coefficient 

(MCC), sensitivity, specificity, negative predictive value (sensitivity of the negative category) and 

false positive rate (false alarm rate) (Baldi et al., 2000). Models with a proportion between the 



number of cases and variables in the equation lower than 4 were rejected. The statistical robustness 

and predictive power of the obtained model was assessed by using an external prediction (test) set. 

2.4 Biological Assay: Determination of ‘in vitro’ Tripanosomicidals Activity and Cytotoxicity 

2.4.1 Parasites and culture procedure 

The strain Y of T. cruzi (Silva and Nussensweig, 1953) was originally isolated from an acute 

human case coming from Marília (São Paulo, Brazil) in 1950. Epimastigotes were grown at 28º C in 

liver infusion tryptose broth (LIT) with 10% fetal bovine serum (FBS), penicillin and streptomycin as 

previously described (Gómez-Barrio et al., 1997). 

2.4.2 Epimastigotes susceptibility assay 

The activity was evaluated with resazurin by colorimetric method described previously (Rolón 

et al., 2006b). The screening assay was performed in 96-well microplates with cultures in LIT with 

10% FBS, which had not reached the stationary phase. Epimastigotes were seeded at 3 x 106 per 

milliliter in culture tubes. Following a 24 h incubation to allow homogeneous growth, 200 µl volumes 

were seeded in the plates in the presence of serial dilutions of reference drugs (concentration range as 

above) at 28º C for 48 hours, at which time 20 µl of resazurin solution 3mM was added and returned 

to the incubator for another 5 h. A solution of resazurin was prepared in 1% phosphate buffer solution 

(PBS), pH 7 and filter sterilized before use. Growth controls were also included. The oxidation-

reduction was quantitated at 490 and 595 nm. Each concentration was assayed in triplicate. In order to 

avoid drawback, medium and drug controls were used in each test. The anti-epimastigotes percentage 

(%AE) was calculated as follows: 

%AE = [(ALW–(AHW×RO) test well)/(ALW–(AHW×RO) positive growth control)] ×100 

where, ALW and AHW represents the absorbances at the lower and the higher wavelength 

respectively (medium was subtracted) and  RO represents the correction factor (RO=ALW/AHW  for 

resazurin in medium). 

2.4.3 Cell culture 

The cell lines used were National Collection of Type Cultures (NCTC) clone 929 and murine 

J774 macrophages. NCTC clone 929 cells were grown in Minimal Essential Medium (Sigma) and 

J774 macrophages were grown in RPMI 1640 medium (Sigma). Both media were supplemented with 

10% heat-inactivated FBS (30 minutes at 56ºC), penicillin G (100 U/mL) and streptomycin (100 

µg/mL). For the experiments, cells in the pre-confluence phase were harvested with trypsin. Cell 

cultures were maintained at 37ºC in a humidified 5% CO2 atmosphere. 



2.4.4 Cytotoxicity assays 

The procedure for cell viability measurement was evaluated with resazurin by a colorimetric 

method described previously (Rolón et al., 2006a; Rolón et al., 2006b). The macrophages J774 were 

seeded (5 × 104 cells/well) in 96-well flat-bottom microplates with 100 µl of RPMI 1640 medium. 

The cells were allowed to attach for 24 h at 37ºC, 5% CO2 and the medium was replaced by different 

concentrations of the drugs in 200 µl of medium, and exposed for another 24 h. Growth controls were 

also included. Afterwards, a volume 20 µl the 2mM resazurin solution was added and plates were 

returned to incubator for another 3 h. to evaluate cell viability. The reduction of resazurin was 

determined by dual wavelength absorbance measurement at 490 nm and 595 nm. Background was 

subtracted. Each concentration was assayed in triplicate. Medium and drug controls were used as 

blanks in each test.  

3. Results and Discussion 

3.1. LDA-QSAR Models: Developing and validation. 

The LDA has become an important tool for the prediction of chemical properties. Due to the 

simplicity of this method many useful discriminant models have been developed and presented by 

different authors in the literature (Estrada and Peña, 2000; Estrada et al., 2000; Marrero Ponce et al., 

2005; Casañola-Martin et al., 2006; Marrero-Ponce et al., 2006b; Castillo-Garit et al., 2008b; Castillo 

Garit et al., 2008). It was the technique used in the generation of a discriminant function in the present 

work. The principle of maximal parsimony (Occam’s razor) was taken into account as the strategy for 

model selection (Estrada, 1999). The general data set was randomly divided into two subsets, training 

and test set (which have 346 and 94 compounds, respectively), both of them containing active and 

inactive compounds. The best models obtained using bond-based non-stochastic and stochastic 

quadratic indices as molecular descriptors, together with their statistical parameters are given below, 

respectively: 

Class= -2.77 – 1.73x10-1 Gq0L
H( x E) + 8.62x10-2 Gq1

H( x ) – 5.94x10-4 Gq4( x )  

              + 7.10x10 Gq12L
H( x E) – 2.32x10-2 Gq1L( x E) – 7.52x10-7 Gq8

H( x )                          (1)                         

N = 346             λ = 0.35                         QTotal = 93.35 %          MCC = 0.86 

D2 = 8.10            F = 104.32              p < 0.0001 

         

Class= -3.54 – 1.04x10-2 Msq2( x ) + 5.27x10-3 Msq14L( x E) + 1.54x10-2 Msq4( x )  

            + 5.43x10-3 Msq2L( x E) + 1.44x10-2 Msq0
H( x ) – 1.40x10-2 Msq0L

H( x E)  



             – 8.01x10-3 Msq3( x ) + 4.35x10-2 Msq15L( x E) – 1.43x10-1 Msq11L( x E)  

            + 9.13x10-2 Msq9L( x E)                                                                                               (2) 

N = 346             λ = 0.50                         QTotal = 87.57 %          MCC = 0.73 

D2 = 4.41            F = 33.69              p < 0.0001     

where, N is the number of compounds, λ is the Wilks’ statistic, QTotal is the accuracy of the model for 

the training set, MCC is the Matthews’ correlation coefficient, D2 is the square Mahalanobis distance, 

F is the Fisher ratio and p-value is its significance level. 

The non-stochastic model (Eq. 1), which includes non-stochastic indices, has an accuracy of 

93.35% for the training set. This model showed a high MCC of 0.86; MCC quantifies the strength of 

the linear relation between the molecular descriptors and the classifications, and it may usually 

provide a much more balanced evaluation of the prediction than, for instance, the percentages 

(accuracy) (Baldi et al., 2000). Nevertheless, the most important criterion, for the acceptance or not of 

a discriminant model, is based on the statistics for external prediction set. The non-stochastic model 

showed an accuracy of 95.74% (MCC = 0.90) for the compounds in the test set. 

On the other hand, a stochastic linear indices model was obtained (Eq. 2), this model achieved 

an accuracy of 87.57% with a MCC of 0.73, for the test set the results of this model were an accuracy 

of 86.17% and MCC of 0.69; these values are acceptable, but lower than those obtained with non-

stochastic quadratic indices. These results are given in Table 1. 

Table 1. Prediction performances for LDA-based QSAR models for training and test sets. 
Modelsa Matthews Corr. 

Coefficient (C) 
Accuracy 

‘QTotal’ (%) 
Specificity

(%) 
Sensitivity 

‘hit rate’ (%) 
Training set 

Eq. 1 0.86 93.35 84.89 98.33 
Eq. 2 0.73 87.57 78.95 87.50 

Test set 
Eq. 1 90.00 95.74 85.19 100.00 
Eq. 2 69.00 86.17 65.63 91.30 

 
In addition, the probability of correctly predicting a positive example (sensitivity or hit rate) and 

the probability that a positive prediction will be correct (specificity) were computed for both models. 

The values obtained for sensibility were 98.33% and 87.50% for non-stochastic and stochastic 

models, correspondingly. While these measures provide some information on the predictivity for 

positive observations, the negative predictive value (sensitivity of the negative category) gives a 

criterion of good classification for the inactive group. In this case, values of specificity were 84.89% 

and 78.95% for Eqs 1 and 2, correspondingly. Moreover, Figures 1 and 2 give a plot of the ∆P% for 



the classification of all compounds in both training and test sets from models 1 and 2, 

correspondingly. 
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Figure 1. Plot of the ∆P% from Eq. 1 (using non-stochastic quadratic indices) for each compound in the 
training and test sets. Compounds 1–120 and 121–143 are active (antitrypanosomal) in training and test sets, 
respectively; chemicals 144–345 and 346-440 are inactive (non-antitrypanosomal) in both training and test 
sets, correspondingly. 
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Figure 2. Plot of the ∆P% from Eq. 2 (using stochastic quadratic indices) for each compound in the training 
and test sets. Compounds 1–120 and 121–143 are active (antitrypanosomal) in training and test sets, 
respectively; chemicals 144–345 and 346-440 are inactive (non-antitrypanosomal) in both training and test 
sets, correspondingly. 
 



3.2. Lead generation by using virtual screening. Identification and Experimental proof.  

The performance of the results obtained above encouraged us to carry out an in silico screening 

to search for novel lead compounds with antitrypanosomal activity, as a way to show the applicability 

of the QSAR models obtained with the TOMOCOMD-CARDD approach, in the selection of hit (or 

lead) compounds. In order to find promising active agents, we selected a pool of compounds not yet 

described in the literature as trypanocidals. Later the in silico essays were performed by using all the 

models developed inside this report, to find bioactive chemicals that present trypanocidal activity.  

Here, nine new organic compounds were evaluated with the LDA-based QSAR models, and the 

in vitro assays of the synthesized compounds were carried out to corroborate the in silico predictions. 

We proceeded to test the compounds in an epimastigote inhibition (in vitro) assay (Vega et al., 2005). 

The ΔP% values of the compounds in the data using all the discriminant functions and the chemical 

structures are depicted in Table 2 and Figure 1. A good agreement is observed between the 

experimental antitrypanosomal activity and theoretical predictions for most of the compounds. Four 

compounds (FER16, FER32, FER33 and FER 132) showed more than 70% of epimastigote inhibition 

at a concentration of 100µg/mL (86.74%, 78.12%, 88.85% and  72.10%, respectively); in addition, 

compound FER19 showed a value of %AE = 69.19% very similar to the cut value (70% of AE). Two 

compounds, FER16 (78.22% of AE) and FER33 (81.31% of AE), also showed good activity at a 

concentration of 10µg/mL. Even though none of them resulted more active than Nifurtimox, the 

current results constitute a step forward in the search for efficient ways to discover new lead 

antitrypanosomals. The remaining compounds which were classified as inactive for the model, 

showed very low inhibition percentages. 

After this preliminary in vitro test, the unspecific cytotoxicity was determined against 

macrophages at the concentrations that were used in the previous assay (Rolón et al., 2006a; Rolón et 

al., 2006b). At this time, two (FER16, and FER33) of the four compound that shown more than 70% 

of epimastigote inhibition at a concentration of 100µg/mL also showed high values of cytotoxicity 

(53.20% and 44.06%, respectively). At a concentration of 10µg/mL, compound FER16 showed lower 

value of cytotoxicity, (15.44%) and compound FER33 showed very low value of 1.37%.On the other 

hand, the compound FER32 showed only 11.29% of cytotoxicity at a concentration of 100µg/mL. 

Taking into account all these results, we can say that these three compounds can be optimized in 

forthcoming works, but we consider that compound FER33 is the best candidate. 

 



Table 2. Compounds evaluated in the present study, their classification (∆P%) according to the obtained models, their antitrypanosomal 
activity and cytotoxicity at three different concentrations (100, 10, and 1 µg/mL) and antitrypanosomal activity of nifurtimox (reference). 

%AE (SD)d %CIe  Compound Exp.a ∆P 
Eq. 1b 

∆P 
Eq. 2c 100µg/mL 10µg/mL 1µg/mL 100µg/mL 10µg/mL 1µg/mL 

FER10 I -80.03 -3.17 15.32± 1,4 5.07± 1,28 0.00± 2,10 21,275 7,65 0 

FER16 A -22.93 62.58 86.74± 1,73 78.22± 1,37 19.85± 2,01 53,02 15,44 4,43 

FER19 A -7.13 69.25 69.19± 1,02 3.17± 0,28 2.93± 2,90 97,78 12,82 6,11 

FER25 I -79.51 -4.10 59.13± 0,53 42.87± 1,4 39.31± 2,66 20,83 6,47 9,188 

FER26 I -72.76 1.04 10.39± 2,05 4.10± 2,21 0.84± 1,68 6,11 2,62 1,88 

FER29 I -99.67 86.76 13.10± 1,22 1.98± 1,48 0.00± 1,13 37,25 7,11 6,04 

FER32 A 21.67 71.30 78.12± 0,71 44.99± 2,52 4.55± 2,44 11.29 0 0 

FER33 A 19.37 71.68 88.85± 3,44 81.31± 0,76 39.03± 4,34 44,06 1,37 0 

FER132  A -89.49 53.82 72.10±0.28 38.20±2.61 14.83±5.16 100 100 94,95 

Nifurtimox A 99.98 98.39 100±1.49 85.45±2.43 38.21±2.17 11.68 0.6 0.32 
aObserved activity. 
bResults of the classification of compounds obtained from Model 1, DP% = [P(active) _ P(inactive)] · 100 
 cResults of the classification of compounds obtained from Model  2, DP% = [P(active) _ P(inactive)] · 100 
dAnti-epimastigotes percentage and standard deviation (SD) 
eCytotoxicity percentage 
A: active 
I: inactive 
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       Figure 3. Structures of the experimentally evaluated compounds. 
 
4. Conclusions 

The research involving the discovery of new trypanosomicidals is considered an impacting 

field in pharmaceutical and therapeutical areas. This fact is due to the fact that Chagas’ disease 

occupies the third place in the number of deaths per year in Latin America. The great number of 

people infected with T. cruzi and the millions in risk of being infected and the low efficacy of the 

actual treatments make of this disease one of the major health problems in Latin America. 

However, the discovery research activities are in general extremely time-consuming and 

expensive; therefore, it is imperative to develop novel alternative techniques. Moreover, the use of 

in silico approaches has emerged as a replacement alternative to in vivo test assays. In spite of 

some criticism, topological indices-based approaches have demonstrated their usefulness in drug 

discovery processes. 

TOMOCOMD-CARDD method has become an attractive tool to be used in chemical and 

bioinformatics research. This strategy allowed us to generate a mathematical model with the 

ability to discriminate antitrypanosomal compounds from inactive ones and to predict, in a 

rational way, the activity of novel heterocyclic compounds against T. cruzi. In the present report, 

the usefulness of the non-stochastic and stochastic bond-based quadratic indices was shown to 

discriminate antitrypanosomal compounds from inactive ones and to predict the activity of novel 

compounds against T. cruzi. Furthermore, four out of nine new compounds, subjected to in silico 

screening, were recognized with antitrypanosomal activity. Afterward, several in vitro 



experiments were performed to corroborate the reliability of the classification functions developed 

in this work and permit us to select the candidates with the best “activity against epimastigote 

forms/unspecific cytotoxicity” rate. 

The interactive and flexible character of the CARDD scheme permits the posterior inclusion 

of other active and inactive compounds in the training set and the generation, at each step, of more 

refined models capable of identifying structural patterns not considered in the present study. 

Finally, we can say that bond-based quadratic indices can be successfully used in the future for 

the rational search for novel antitrypanosomal compounds. 
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Figure S2. . Molecular structures of anti-trypanosomal compounds used in test set 
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