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Abstract

Herein we present results of a Quantitative Structure-Activity Relationship (QSAR) studies to
classify and design, in a rational way, new antitrypanosomal compounds by using non-stochastic and
stochastic bond-based quadratic indices. A data set of 440 organic chemicals, 143 with
antitrypanosomal activity and 297 having other clinical uses, is used to develop QSAR models based
on Linear Discriminant Analysis (LDA). Non-stochastic model correctly classifies more than 93%
and 95% of chemicals in both training and external prediction groups, respectively. On the other
hand, the stochastic model shows an accuracy of about the 87% for both series. As an experiment of
virtual lead generation, the present approach is finally satisfactorily applied to the virtual evaluation
of 9 already synthesized in house compounds. The in vitro antitrypanosomal activity of this series
against epimastigote forms of Trypanosoma cruzi is assayed. The model is able to predict correctly
the behaviour for the majority of these compounds. Four compounds (FER16, FER32, FER33 and
FER 132) showed more than 70% of epimastigote inhibition at a concentration of 100pg/mL
(86.74%, 78.12%, 88.85% and 72.10%, respectively) and two of these chemicals, FER16 (78.22% of
AE) and FER33 (81.31% of AE), also showed good activity at a concentration of 10pg/mL. At the
same concentration, compound FER16 showed lower value of cytotoxicity (15.44%), and compound
FER33 showed very low value of 1.37%. Taking into account all these results, we can say that these
three compounds can be optimized in forthcoming works, but we consider that compound FER33 is
the best candidate. Even though none of them resulted more active than Nifurtimox, the current
results constitute a step forward in the search for efficient ways to discover new lead
antitrypanosomals.
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1. Introduction

Parasitic diseases affect hundreds of millions of people worldwide and result in significant
mortality and devastating social and economic consequences. Nevertheless, most of the drugs
available to treat these diseases are decades old and are frequently limited in efficacy, plagued by
severe side effects and poor patient compliance, or hamstrung by drug resistance. Few, if any, of the
currently available drugs for parasitic diseases would pass through even a discovery-stage screening
funnel today, letting apart preclinical and clinical development (Renslo and McKerrow, 2006). The
current state of chemotherapeutics for parasitic diseases is particularly bleak for those living in the
affected regions of the world because of the low economic incentive for drug development and the
rise of resistant strains (Weisman et al., 2006). These diseases, though globally massive in their
impact, affect mainly poor people in undeveloped regions of the world. As such, they would never be
viewed as viable target markets for the pharmaceutical industry, particularly in today’s post-merger
climate. In parallel, funding for basic research on these organisms and the pathogenesis of the
diseases they produce has been woefully inadequate compared with funding for diseases of much
lower prevalence but more direct impact in the developed countries of Europe and North America
(Renslo and McKerrow, 2006). However, in recent times the Chagas' disease is appearing also in
countries of the First World due to of immigration, organ donation and blood transfusion.

Among the parasitic-diseases, protozoa are responsible for a number of illnesses, including
leishmaniasis, Chagas disease, malaria, schistosomiasis, African trypanosomiasis and
giardiasis/amebiasis. In this sense, Chagas disease or American trypanosomiasis (caused by
Trypanosoma cruzi) occupies the third place in the number of deaths per year, after malaria and
schistosomiasis (Aguirre et al., 2004). It is a major health problem in Latin America, where current
estimates indicate about 20 million people infected with T. cruzi, almost 100 million in risk of being
infected and 500,000 new cases reported each year (Prieto et al., 2006). Current chemotherapy against
Trypanosoma remains unsatisfactory; available drugs are benznidazole and nitrofurans such as
nifurtimox. The latter has undergone several rumors of discontinuation (Urbina, 2002; Faundez et al.,
2005), probably because of limited markets or the potential risks the pharmaceutical companies may
incur because of suspicion of long-term toxicity (COSTB9, 1997-2002). Both drugs have significant
activity in only the acute and short-term chronic phases. Their efficacy, however, is very low in the

established chronic phase, which is prevalent in Latin America and is considered incurable (Urbina



and Docampo, 2003). Their efficacy also varies according to geographical areas, mainly because of
differences in drug susceptibility of different T. cruzi strains (Andrade et al., 1992; Urbina, 2002).

Screening large chemical libraries to identify compounds with trypanocidal activity has been
hindered in the past by the lack of efficient screening assays with available assays being labour
intensive, relying on expensive instrumentation, or requiring radioisotopes (Kaminsky and Brun,
1993). Descriptor-based virtual screening arises as one interesting option for researchers from
developing countries to discover, in short time and with low costs, promissory drugs in the fight
against Chagas (Prieto et al., 2006). In this context, our research group has recently developed a novel
scheme to generate molecular fingerprints based on the application of discrete mathematics and linear
algebra theory. The approach [known as TOMOCOMD acronym of TOpological MOlecular
COMputer Design] (Marrero-Ponce and Romero, 2002; Marrero-Ponce, 2003; Marrero Ponce, 2004;
Marrero-Ponce et al., 2006¢; Casanola-Martin et al., 2007; Marrero-Ponce et al., 2007; Marrero-
Ponce et al., 2008) allows us to perform rational in silico molecular design (selection/identification)
and Quantitative Structure-Activity/Property Relationship (QSAR/ QSPR) studies. Therefore, this
scheme has been applied to the prediction of several physical, physicochemical, chemical,
pharmacokinetical, toxicological as well as biological properties (Marrero-Ponce, 2004; Marrero-
Ponce et al., 2004; Marrero-Ponce et al., 2005a; Casafiola-Martin et al., 2006; Marrero-Ponce et al.,
2006b; Marrero-Ponce et al., 2007; Castillo-Garit et al., 2008a; Castillo-Garit et al., 2008b). It was,
for instance, successfully used in the virtual screening of novel antihelminthic compounds, which
were then synthesized and evaluated in vivo on Fasciola hepatica (Marrero-Ponce et al., 2005b).
Other studies for the rational discovery of novel paramphistomicides (Marrero-Ponce et al., 2005¢),
antimalarial (Marrero-Ponce et al., 2005d) and antibacterial (Marrero-Ponce et al., 2006a) compounds
were also conducted with the TOMOCOMD approach; also studies related to proteomics (Marrero-
Ponce et al., 2005¢) and nucleic acid-drug (Marrero Ponce et al., 2005) interactions have been carried
out. In addition, this method has been extended to consider three-dimensional (3D) features of
small/medium-sized molecules on the basis of the application of a trigonometric 3D-chirality
correction factor (Marrero-Ponce and Castillo-Garit, 2005; Castillo-Garit et al., 2006; Castillo-Garit
et al., 2007; Castillo-Garit et al., 2008c).

In the present report, bond-based non-stochastic and stochastic quadratic indices are used to find
classification models that allow the discrimination of antitrypanosomal compounds. This kind of

approach permits the rational identification of those candidates to be evaluated, which have the



highest probabilities of being active ones. Following this idea, eight already-synthesized compounds
were then in silico evaluated and, after that, in vitro assayed against epimastigote forms of
Trypanosoma cruzi. Cytotoxic studies were also conducted, as selection criterion of compounds to be
evaluated in further anti-amastigote and in vivo assays.
2. Materials and Methods
2.1. Data set for QSAR Study

The general data set used in this study consists of 440 compounds of great structural variation,
143 of which are actives and 297 are inactive against trypanosome. The antitrypanosomals considered
in this study are representative of families with diverse structural patterns and were collected from
previous publications (Gillmor et al., 1997; Urbina et al., 1998; Bonse et al., 1999; Cerecetto et al.,
2000; Hiyoshi et al., 2000; Werbovetz, 2000; Buckner et al., 2001; Salmon-Chemin et al., 2001;
Zuccotto et al., 2001; Daunes and D'Silva, 2002; Du et al., 2002; Elhalem et al., 2002; Gilbert, 2002;
Bal et al., 2003; Buckner et al., 2003; Hamilton et al., 2003; Huang et al., 2003; Urbina et al., 2004) .
The names of compounds in the database together with their experimental data taken from the
literature are reported in the Supporting Information (activity data and structures of the 143 anti-
trypanosome agents in Tables S1 and Figures S1, respectively). It is remarkable that the wide
variability of drugs and mechanisms of action of active compounds in the training and prediction sets
assures adequate extrapolation power and increases the possibilities of the discovery of new lead
compounds with novel mechanisms of action, which results one of the most critical aspects in the
construction of non-congeneric data. Therefore, this dataset provide us with a suitable data matrix for
investigating the potential of computational tools in ligand-based drug design of trypanocidal agents

On the other hand, 297 compounds having different clinical uses such as antivirals,
sedative/hypnotics, diuretics, anticonvulsants, hemostatics, oral hypoglycemics, anti-hypertensives,
antihelminthics and anticancer compounds as well as some other kinds of drugs were selected for the
set of inactive compounds through random selection, guaranteeing great structural variability as well.
All these compounds were taken from the Negwer Handbook (Negwer, 1987) and Merck Index
(1996) in which their names, synonyms, and structural formulas can be found. The classification of
these organic compounds as ’inactive’ (non-antitrypanosomal) does not guarantee that all are truly so;
some of them may have inhibitory activity toward tyrosinase, which is undetected. This problem can
be reflected in the results of classification for the series of inactive compounds (Estrada and Pefia,

2000).



2.2. Computational approach

The theory of the bond-based quadratic indices used in this study was discussed in detail in an
earlier publications (Marrero-Ponce et al., 2006c). Specifically, the CARDD (Computed-Aided
Rational Drug Design) module implemented in the TOMOCOMD Software (Marrero-Ponce and
Romero, 2002) was used in the calculation of bond-based non-stochastic and stochastic quadratic
indices. In this study, the properties used to differentiate the molecular atoms are those previously
proposed for the calculation of the DRAGON descriptors (Kier and Hall, 1986; Todeschini and
Gramatica, 1998; Consonni et al., 2002), i.e., atomic mass (M), atomic polarizability (P), atomic
Mullinken electronegativity (K), van der Waals atomic volume (V), plus the atomic electronegativity
in Pauling scale (G)(Pauling, 1939).

The bond-based quadratic indices descriptors computed in this study were the following:

1) k™ (k = 15) total non-stochastic bond-based quadratic indices, not considering and considering
H-atoms in the molecular graph (G) [o(W ) and g’ (W), respectively].

2) k™ (k = 15) total stochastic bond-based quadratic indices, not considering and considering H-
atoms in the molecular graph (G) [*qx(W ) and *qi"'(W ), respectively].

3) k™ (k = 15) bond-type local (group = heteroatoms: S, N, O) non-stochastic quadratic indices, not
considering and considering H-atoms in the molecular graph (G) [Qk(WEg) and Qu (W),
correspondingly]. These local descriptors are putative molecular charge, dipole moment, and H-
bonding acceptors.

4) k' (k = 15) bond-type local (group = heteroatoms: S, N, O) stochastic quadratic indices, not
considering and considering H-atoms in the molecular graph (G) [‘qx(Wg) and *u’(WE),
correspondingly]. These local descriptors are also putative molecular charge, dipole moment, and
H-bonding acceptors.

2.3. Chemometric method

Linear discriminant analysis (LDA) was performed with software package STATISTICA
(STATISTICA version. 6.0, 2001). Forward stepwise was fixed as the strategy for variable selection.
The quality of the models was determined by examining Wilk's A parameter (U-statistic), square
Mahalanobis distance (D?), Fisher ratio (F) and the corresponding p-level (p(F)) as well as the
percentage, in training and test sets, of global good classification, Matthews’ correlation coefficient
(MCC), sensitivity, specificity, negative predictive value (sensitivity of the negative category) and

false positive rate (false alarm rate) (Baldi et al., 2000). Models with a proportion between the



number of cases and variables in the equation lower than 4 were rejected. The statistical robustness
and predictive power of the obtained model was assessed by using an external prediction (test) set.
2.4 Biological Assay: Determination of ‘in vitro’ Tripanosomicidals Activity and Cytotoxicity
2.4.1 Parasites and culture procedure

The strain Y of T. cruzi (Silva and Nussensweig, 1953) was originally isolated from an acute
human case coming from Marilia (Sao Paulo, Brazil) in 1950. Epimastigotes were grown at 28° C in
liver infusion tryptose broth (LIT) with 10% fetal bovine serum (FBS), penicillin and streptomycin as
previously described (Gomez-Barrio et al., 1997).
2.4.2 Epimastigotes susceptibility assay

The activity was evaluated with resazurin by colorimetric method described previously (Rolon
et al., 2006b). The screening assay was performed in 96-well microplates with cultures in LIT with
10% FBS, which had not reached the stationary phase. Epimastigotes were seeded at 3 x 10° per
milliliter in culture tubes. Following a 24 h incubation to allow homogeneous growth, 200 ul volumes
were seeded in the plates in the presence of serial dilutions of reference drugs (concentration range as
above) at 28° C for 48 hours, at which time 20 pl of resazurin solution 3mM was added and returned
to the incubator for another 5 h. A solution of resazurin was prepared in 1% phosphate buffer solution
(PBS), pH 7 and filter sterilized before use. Growth controls were also included. The oxidation-
reduction was quantitated at 490 and 595 nm. Each concentration was assayed in triplicate. In order to
avoid drawback, medium and drug controls were used in each test. The anti-epimastigotes percentage
(%AE) was calculated as follows:
%AE = [(ALW—-(AHWxRO) test well)/(ALW—-(AHWXxRO) positive growth control)] X100
where, ALW and AHW represents the absorbances at the lower and the higher wavelength
respectively (medium was subtracted) and RO represents the correction factor (RO=ALW/AHW for
resazurin in medium).
2.4.3 Cell culture

The cell lines used were National Collection of Type Cultures (NCTC) clone 929 and murine
J774 macrophages. NCTC clone 929 cells were grown in Minimal Essential Medium (Sigma) and
J774 macrophages were grown in RPMI 1640 medium (Sigma). Both media were supplemented with
10% heat-inactivated FBS (30 minutes at 56°C), penicillin G (100 U/mL) and streptomycin (100
pg/mL). For the experiments, cells in the pre-confluence phase were harvested with trypsin. Cell

cultures were maintained at 37°C in a humidified 5% CO, atmosphere.



2.4.4 Cytotoxicity assays

The procedure for cell viability measurement was evaluated with resazurin by a colorimetric
method described previously (Rolon et al., 2006a; Rolon et al., 2006b). The macrophages J774 were
seeded (5 x 10 cells/well) in 96-well flat-bottom microplates with 100 pl of RPMI 1640 medium.
The cells were allowed to attach for 24 h at 37°C, 5% CO; and the medium was replaced by different
concentrations of the drugs in 200 pl of medium, and exposed for another 24 h. Growth controls were
also included. Afterwards, a volume 20 pl the 2mM resazurin solution was added and plates were
returned to incubator for another 3 h. to evaluate cell viability. The reduction of resazurin was
determined by dual wavelength absorbance measurement at 490 nm and 595 nm. Background was
subtracted. Each concentration was assayed in triplicate. Medium and drug controls were used as
blanks in each test.

3. Results and Discussion
3.1. LDA-QSAR Models: Developing and validation.

The LDA has become an important tool for the prediction of chemical properties. Due to the
simplicity of this method many useful discriminant models have been developed and presented by
different authors in the literature (Estrada and Pefia, 2000; Estrada et al., 2000; Marrero Ponce et al.,
2005; Casanola-Martin et al., 2006; Marrero-Ponce et al., 2006b; Castillo-Garit et al., 2008b; Castillo
Garit et al., 2008). It was the technique used in the generation of a discriminant function in the present
work. The principle of maximal parsimony (Occam’s razor) was taken into account as the strategy for
model selection (Estrada, 1999). The general data set was randomly divided into two subsets, training
and test set (which have 346 and 94 compounds, respectively), both of them containing active and
inactive compounds. The best models obtained using bond-based non-stochastic and stochastic

quadratic indices as molecular descriptors, together with their statistical parameters are given below,

respectively:
Class=-2.77 — 1.73x10™" Sqo. (X p) + 8.62x107 g, "(X ) — 5.94x107* €qu( X)
+7.10x10 €quo (X £) — 2.32x1072 (X £) — 7.52x107 Cgg'( X)) (1)
N =346 A =0.35 Qrotal = 93.35 % MCC = 0.86
D?=38.10 F=104.32 p < 0.0001

Class= -3.54 — 1.04x102Mqy(X ) + 5.27x10° M (X ) + 1.54x102 Mgy(X)
+5.43x107 Mapr(X g) + 1.44x107 g0 (X ) — 1.40x107 o (X 1)



—8.01x107 Mg3( X ) + 4.35x102 Mgy 5. (X ) — 1.43x107 Mgy X p)

+9.13x10>Mqo (X g) (2)
N =346 A =0.50 Qrotal = 87.57 % MCC =0.73
D*=4.41 F =33.69 p < 0.0001

where, N is the number of compounds, A is the Wilks’ statistic, Qrotal 1S the accuracy of the model for
the training set, MCC is the Matthews’ correlation coefficient, D? is the square Mahalanobis distance,
F is the Fisher ratio and p-value is its significance level.

The non-stochastic model (Eq. 1), which includes non-stochastic indices, has an accuracy of
93.35% for the training set. This model showed a high MCC of 0.86; MCC quantifies the strength of
the linear relation between the molecular descriptors and the classifications, and it may usually
provide a much more balanced evaluation of the prediction than, for instance, the percentages
(accuracy) (Baldi et al., 2000). Nevertheless, the most important criterion, for the acceptance or not of
a discriminant model, is based on the statistics for external prediction set. The non-stochastic model
showed an accuracy of 95.74% (MCC = 0.90) for the compounds in the test set.

On the other hand, a stochastic linear indices model was obtained (Eq. 2), this model achieved
an accuracy of 87.57% with a MCC of 0.73, for the test set the results of this model were an accuracy
of 86.17% and MCC of 0.69; these values are acceptable, but lower than those obtained with non-
stochastic quadratic indices. These results are given in Table 1.

Table 1. Prediction performances for LDA-based QSAR models for training and test sets.

Models® Matthews Corr. Accuracy Specificity Sensitivity
Coefficient (C) “Qrotar’ (Y0) (%) ‘hit rate’ (%)
Training set
Eq. 1 0.86 93.35 84.89 98.33
Eq.2 0.73 87.57 78.95 87.50
Test set
Eq. 1 90.00 95.74 85.19 100.00
Eq. 2 69.00 86.17 65.63 91.30

In addition, the probability of correctly predicting a positive example (sensitivity or hit rate) and
the probability that a positive prediction will be correct (specificity) were computed for both models.
The values obtained for sensibility were 98.33% and 87.50% for non-stochastic and stochastic
models, correspondingly. While these measures provide some information on the predictivity for
positive observations, the negative predictive value (sensitivity of the negative category) gives a
criterion of good classification for the inactive group. In this case, values of specificity were 84.89%

and 78.95% for Eqgs 1 and 2, correspondingly. Moreover, Figures 1 and 2 give a plot of the AP% for



the classification of all compounds in both training and test sets from models 1 and 2,

correspondingly.
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Figure 1. Plot of the AP% from Eq. 1 (using non-stochastic quadratic indices) for each compound in the
training and test sets. Compounds 1-120 and 121-143 are active (antitrypanosomal) in training and test sets,
respectively; chemicals 144345 and 346-440 are inactive (non-antitrypanosomal) in both training and test
sets, correspondingly.
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Figure 2. Plot of the AP% from Eq. 2 (using stochastic quadratic indices) for each compound in the training
and test sets. Compounds 1-120 and 121-143 are active (antitrypanosomal) in training and test sets,
respectively; chemicals 144345 and 346-440 are inactive (non-antitrypanosomal) in both training and test
sets, correspondingly.



3.2. Lead generation by using virtual screening. ldentification and Experimental proof.

The performance of the results obtained above encouraged us to carry out an in silico screening
to search for novel lead compounds with antitrypanosomal activity, as a way to show the applicability
of the QSAR models obtained with the TOMOCOMD-CARDD approach, in the selection of hit (or
lead) compounds. In order to find promising active agents, we selected a pool of compounds not yet
described in the literature as trypanocidals. Later the in silico essays were performed by using all the
models developed inside this report, to find bioactive chemicals that present trypanocidal activity.

Here, nine new organic compounds were evaluated with the LDA-based QSAR models, and the
in vitro assays of the synthesized compounds were carried out to corroborate the in silico predictions.
We proceeded to test the compounds in an epimastigote inhibition (in vitro) assay (Vega et al., 2005).
The AP% values of the compounds in the data using all the discriminant functions and the chemical
structures are depicted in Table 2 and Figure 1. A good agreement is observed between the
experimental antitrypanosomal activity and theoretical predictions for most of the compounds. Four
compounds (FER16, FER32, FER33 and FER 132) showed more than 70% of epimastigote inhibition
at a concentration of 100pg/mL (86.74%, 78.12%, 88.85% and 72.10%, respectively); in addition,
compound FER19 showed a value of %AE = 69.19% very similar to the cut value (70% of AE). Two
compounds, FER16 (78.22% of AE) and FER33 (81.31% of AE), also showed good activity at a
concentration of 10pug/mL. Even though none of them resulted more active than Nifurtimox, the
current results constitute a step forward in the search for efficient ways to discover new lead
antitrypanosomals. The remaining compounds which were classified as inactive for the model,
showed very low inhibition percentages.

After this preliminary in vitro test, the unspecific cytotoxicity was determined against
macrophages at the concentrations that were used in the previous assay (Roldn et al., 2006a; Rolén et
al., 2006b). At this time, two (FER16, and FER33) of the four compound that shown more than 70%
of epimastigote inhibition at a concentration of 100pg/mL also showed high values of cytotoxicity
(53.20% and 44.06%, respectively). At a concentration of 10ug/mL, compound FER16 showed lower
value of cytotoxicity, (15.44%) and compound FER33 showed very low value of 1.37%.0n the other
hand, the compound FER32 showed only 11.29% of cytotoxicity at a concentration of 100pug/mL.
Taking into account all these results, we can say that these three compounds can be optimized in

forthcoming works, but we consider that compound FER33 is the best candidate.



Table 2. Compounds evaluated in the present study, their classification (AP%) according to the obtained models, their antitrypanosomal
activity and cytotoxicity at three different concentrations (100, 10, and 1 pg/mL) and antitrypanosomal activity of nifurtimox (reference).

Compound Exp.* AP AP %AE (SD)* %CI*
Eq.1"  Eq.2° — 5ot TOpg/mL Ing/mL 100pg/mL  10pg/mL  Ipg/mL
FERI0 I 80.03 317 1532% 1.4 5.07% 1.28 0.00 2,10 21275 7,65 0
FER16 A 2293 6258 8674173 7822137 19.85+ 2,01 53,02 15,44 4,43
FER19 A 713 6925 6919102 3.17£028 2,93+ 2,90 97,78 12,82 6,11
FER25 I 7951 410 59.13+0,53  42.87+ 14 3931 2,66 20,83 6,47 9,188
FER26 I 7276 1.04 10.39£2,05  4.10£221 0.84+ 1,68 6,11 2,62 1,88
FER29 I 9967 8676  13.10£122  1.98+ 148 0.00 1,13 37,25 7,11 6,04
FER32 A 2167 7130 78.12£071  44.99+2.52 4.5+ 2,44 11.29 0 0
FER33 A 1937 7168  88.85:344  81.31£0,76 39.03= 4,34 44,06 1,37 0
FER132 A 8949 5382 72.1080.28  38.20+2.61 14.8345.16 100 100 94,95
 Nifurtimox A 99.98 9839 100:1.49 85.45£2.43  3821%2.17 168 06 032

?Observed activity.

PResults of the classification of compounds obtained from Model 1, DP% = [P(active) _P(inactive)] - 100
“Results of the classification of compounds obtained from Model 2, DP% = [P(active) _P(inactive)] - 100
dAnti-epimastigotes percentage and standard deviation (SD)

‘Cytotoxicity percentage

A: active

I: inactive



FER 32 FER 33 FER 132
Figure 3. Structures of the experimentally evaluated compounds.

4. Conclusions

The research involving the discovery of new trypanosomicidals is considered an impacting
field in pharmaceutical and therapeutical areas. This fact is due to the fact that Chagas’ disease
occupies the third place in the number of deaths per year in Latin America. The great number of
people infected with T. cruzi and the millions in risk of being infected and the low efficacy of the
actual treatments make of this disease one of the major health problems in Latin America.
However, the discovery research activities are in general extremely time-consuming and
expensive; therefore, it is imperative to develop novel alternative techniques. Moreover, the use of
in silico approaches has emerged as a replacement alternative to in Vvivo test assays. In spite of
some criticism, topological indices-based approaches have demonstrated their usefulness in drug
discovery processes.

TOMOCOMD-CARDD method has become an attractive tool to be used in chemical and
bioinformatics research. This strategy allowed us to generate a mathematical model with the
ability to discriminate antitrypanosomal compounds from inactive ones and to predict, in a
rational way, the activity of novel heterocyclic compounds against T. cruzi. In the present report,
the usefulness of the non-stochastic and stochastic bond-based quadratic indices was shown to
discriminate antitrypanosomal compounds from inactive ones and to predict the activity of novel
compounds against T. cruzi. Furthermore, four out of nine new compounds, subjected to in silico

screening, were recognized with antitrypanosomal activity. Afterward, several in vitro



experiments were performed to corroborate the reliability of the classification functions developed
in this work and permit us to select the candidates with the best “activity against epimastigote
forms/unspecific cytotoxicity” rate.

The interactive and flexible character of the CARDD scheme permits the posterior inclusion
of other active and inactive compounds in the training set and the generation, at each step, of more
refined models capable of identifying structural patterns not considered in the present study.
Finally, we can say that bond-based quadratic indices can be successfully used in the future for

the rational search for novel antitrypanosomal compounds.
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Compounds Eq.1 Eq. 2 Compounds Eq.1 Eq. 2
hetetoin -94.44 -3247 Carzenide '96'1? -33 'JE
Mephenytoin 0402 2422 Teofillina -99.37 —39-1
Oyotonsan Fe 9874 8460 Siccamid 9980 3973
Cobalti glutamas ~ -98.43  -86.68 Teclothiazide -99.70  -76.67
Ferrost ascorbas -99.37 -78.57 £ _ _ 99.95 80.23
Arecoline -97.06 -82.09 Propamin”soviet -QE_EE _ED'EE
Butanolum 9208 9481 Cystamine 9789 7417
Cupriaseptol 9549  -3681 Amifostine -99.67 9951
E‘[am'}'}rlate. -9 E_':}ﬁ‘ —E 1 ?9 - S
xS S mes gm0 R

oy atilo -l -12.3
C ai‘_naz-::-u:hmme _ Glisolamide 93.82 30.45
sodivm sulfonate  -99.04 406 Glibutimi 71 61 4386

~ ] i 1imane e .
A-Peest 'E o o] RMI 11894 7413 6241
Besunide -79.94 -5.82 99 63 26,72
Vitamin B15 9985 -94.69 e S e
Spironolactone -99.66 08.86 D:i;':ml yeree 08 27 0114
Chlormetaminofen Etoformin ) '
amide gggg iig; hydrochloride ~ -98.47  -99.09
Lemidosul o o Benfosformin 9960 4401
Urea -08.03 -94.78 :

: 09 35 9427 Phenformin

Guanamine . < hydrochloride 9281  -52.40
Glycerol -98.33 -89.54 Mebenformin -93.85 -36.03
Succinic acid -97.73 -88.09 Glyclopyramide  -98.82 -65.52
Pamabron -98.66 949 Glyprothiazol 9410  -85.19
Oxaden . -08.56 —3?.53 Phenbutamide 03 84 B757
Propazolamide 9958 -95.78 Carbutamide 9536 9353
Methazolamide -99.73 -96.25 MMetasulfanilbutylc
Chlormerodsin -99.91 -75.18 arbamide © 9549 _02 67
Theophylline- Centpiperalone -85.26 -38.81
Merodrin -090 67 -80.23 Glvbuzole -06.72 -52.74
E'lﬂfeua[pide 0971 7219 SPC-TO3 _91.00 _84.03
Chloraminophena Tolpyrranude -85 72 -87.67
midum -99.83 -76.56 Glybuthiazol 9762 -7297
Butazolamidum -09.50 0788 Thiazanol 0721 -04.00
Ambuside -99.61 -26.83 Tolbutamide -34.79 0167
Merbiurelidin -00 88 90.67 Hypoglyein B -98.29 -32.85
Manna sugar -09.65 -84.72 Anticoman -97.97 93.08
Chlorothiazide -09.67 -G9.32 Furfurviurea -39.71 -33.51



Table S2. Cont... Table S2. Cont...
Compounds Eq.1 Eqg. 2 %ompounds Eq.1 Eqg. 2
Glvmidine sodinm -28-18 -3.55 etranmonii <
Clorexamide 9731 -63.72 iodidum 9963 9333
Glvsobuzole -96.26 9279 Cyelocheline -
Glypinamide 9854  -7821 tosilate 9272 9495
A 7 -88.51 -T8.83 Methylene
Bfnifchnlme 9978  -98.61 chloride 9961 9316
Mebetide 9012 -T0.26 Ethylene 8827 9073
Minoxidil 9727 0171 Dioxychlorane £9.97 -75.68
Hemedin 9617  -92.97 Aliflurane 9850 8169
Penbutamin 9985  -95.12 Viayl ether -93.33 9143
Guanoctine Tiouracilo _QE"” -86.31
hydrochloride 9943 9111 Thiamazole 9728 -90.74
Guamsoquine Carbimazole -98.88 -96.43
sulfate -94.16 96.30 Percloroetane -99.98 -64.69
Flutonidine Lindane -99.91  -31.03
hvdrochloride -98.51 -37.72 Ascaridole -97.27 -83.09
MNicopheoline -92.73 -63.13 Pyrantel tartrate -3494 -60.72
Ganglefene Fentanilo 55.49 76.89
hydrochlonde -32.64 40 33 Tenalidine tartrate -0/-31 26.02
CQuateron -17.36  -52.22 Dioxoprometazine
Pancuroninm hvdrocloride -83.61 63.75
bromide -97.78 8727 N-hidroxymetil-N-
Plegarn] 05 50 0271 metﬂurea- S99 210 -03.33
Gaplegin -09.43 96.62 2 4.5 triclofenol  -99.76 -6.035
Oxaditon 9956 -96.23 [ﬁ-ﬁida‘nx}'pi'np}rl
.ﬂLgEﬂﬂT -09. 74 97.02 trimetilamoninm
Dimecoloninm hvdroxide -00.42 -97.35
iodide 9966  -91.80 Norgamem 9817 -9321
Dicoline 0723 -92.12 Emylcamate 0812 -80.89
Met!l}'lpxamethnﬂi Mephenesia
um iodide -09.638 -96.95 cathamate 0572 -50.83
Hexa:methquigm -99.86 96.32 Methocarbamol 0871 -58.94
T{*eplnuru %l.'.‘ld;ld.-E -00 68 -01.63 Luvatren 28 51 18 83
Tiaf]lE'[]lDﬂillﬂ] _ Lorbamate -00. 04 -37.69
1{:-:11-:1'.?_ -0073 -97.72 Furtrethoninm
Imekhin 9849 8385 iodide 9875  -93.08
Di[ﬂ.E'Eﬂ[EIJ.‘IFLE _Qg_gf '55'44 Ergocristine 1.27 Q7.78
ﬁﬁﬁﬁ; een e Etilefrine vivalate -93.38  -25.78



Table S2. Cont... Table S3. Classification of active

Compounds Eq.1 Eq. 2 compounds included in the test set using
Etafedrine Equations 1 and 2
hvdrochloride -88 38 -50.23 Compounds Eg.1 Eq. 2
Is‘nprmliue -04.55 -44 &3 Ip 8432 78.61
Isofenefrine -88.63 4775 2p 9280 82.28
Phenylethanolami 0 58 4810 ip 2831 6591
ne - . =
Adrenaline borate -96.33 -46.32 .__11:' EE é; i?gg
Amfetamine 6190  -56.61 . . -
Norephedrine ~ -82.82  -35.21 6p 9993 9803
Metaraminol -80.25 -37.43 p 09.94 97.88
Corbadrine -85.35 -34.42 9p 9994 08.08
Alafosfalin 9984 0741 11p 55.44 0913
Furaguanidine 9965  -6496 i
=T - - 12p 7878 00.86
Sulfanilamide -94.07 -85.82 o
Parabortine 9711 29.68 13p o827 9943
Allicin 9265 -84.77 14p §7.94  -31.60
1442 Streptomycin -99.88 22.37 15p 86.34 -453.78
1443 16p 2305 7311
Azirinomycin 0554 -88.18 Tp 3432 74.36
1444 Gentamicin 18p 08 74 a5 50
A -09 32 -34 84 19p 55 58 10 13
2 8333 61.33
21p 08.03 8012
22p 05.66 37.25

23p 0023 64.85



Table S4. Classification of inactive
compounds included in the test set using

Equations 1 and 2

Table S4. Cont...

Compounds Eq.1 Eq. 2
Val-15 86.72 -35.89
Val-38 20.43 -52.85
Vasi-b 98.73 60.34
Vab-6h 58.83 -31.97

EICAR -98.58 -78.77

Mizoribine 9942 7925

Ribavirin -98.29 -B4.19

Foscarnet -09 88 03 84

IMPY 9308  -88.51

Citenazone 04 55 -60.30

Aciclovir 9871 -62.74

AIDU -99.03 00 73

ES-21392 -0a 77 -81.35
SKF-23880 A -81.23 0057

Carbodine -08.29 -79.76

EVDU -09.39 084

Aphidicolin =~ 100.00 78.03

Zalcitabine -96.10 -82.21

Valaciclowir  -99.79 -83.87

Penciclovir -99.30 -85.83

Clomethiazole -98.41 -89.70

Mevanide -23 99 -57.08

Zonisamide 034972 -35.29

LU 2443 -87.25 -32.42

IL-16 -95.20 0000

Beclamide -05.08 2411

Zebromal 0795 0529

Hierro Girard -98.43 00.07

Ferromaltose 9937 -35.63

Metipamid -00.43 26.90

Trometamel  -99.51 -§2 .45

Thecbromine -99.37 -89.29

Flumethiazide -99 597 -45.24

WE 2823 -959.56 -78.53

Barbismetylu

1odidum -959 .98 -892.61

Basedol -98.26 -90.55

Mitogunazone -9963 -89 59

MMetanephrine -97 .43 -69.38

Compounds Eq.1 Eq. 2
Acebutolol

hydrochloride -02.52 -54 85
Betaxolol -27.40 -31.71
Bisoprolol

fumarate -06.00 -63.04
Pafenolol -05.49 -73.12
Talinolol 0542 -27.88
Cassaidine 00 08 4322
Tioctilate -40.32 -69.92
Arphamenine A  -93.43 0.36
Homocysteine

thiolactone -94.15 9101
Hanthine 0874 -BE.23
Ethyl glutamate  -98.30 -00.90
Thioctamde -03 98 -B8.74
Beta-zitosterol -09 75 B85.36
Ambucetamide -87.23 -77.84
Butaverine -52.59 -32.53
Dirofenine 7680 -53.13
Fenalamide -06.14 -69.19
Phenamacide

hydrochloride -65.66 -52.62
Arifen -09 59 -84 04
Fluopsin C 0B 848 -80. 49
Fludalanine -09 84 -89.07
Cycloserine -08.19 -91.65
Cryptargel -09.65 9771
Emimycin -06.22 -89.51
Enheptin-P -09 35 -BE.08
Protoanemonin -85.16 -79.61
Araserine 09 24 -B6.80
Contramine 'B 0711 -84 57
Todosil-Tabl -08.03 0078
Nitrofurylather 09 54 -80.87
1441 Cefalexin  -89.63 -4.25
1445 Ampicillin -90.52 017
1446 Kanamycin

A 0051 -18.29
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Figure S1. Molecular structures of anti-trypanosomal compounds used in training set
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