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Abstract: A series of 30 neonicotinoid insecticides, bearing nitroconjugated double bond 

and five-membered heterocycles and nitromethylene compounds containing a 

tetrahydropyridine ring with exo-ring ether modifications, active against the cowpea aphids 

(Aphis craccivora), was analyzed using multiple linear regression (MLR) method. The 

semiempirical quantum chemical PM7 approach was employed for structure optimization. 

Structural descriptors were calculated for the minimum energy conformers and were 

related to the insecticidal activity (expressed as pLC50 values) through genetic algorithm, 

using the multiple linear regression (MLR) approach. Several parameters were applied for 

internal and external model validation. The final MLR models demonstrated good 

statistical results and predictive power. Fewer number of 6-membered rings, a reduced 

number of rings containing secondary C(sp3) atoms, and/or lower values of strongest basic 

pKa in the core structure of neonicotinoids are considered to increase the insecticide 

activity.  
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1. Introduction 

Neonicotinoids are considered to be one of the most important and relevant classes of insecticides 

used nowadays [1, 2].  
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They are active on the insect postsynaptic nicotinic acetylcholine receptors (nAChRs) and still of 

current interest, despite their resistance and bee toxicity [3]. Several studies of computational 

chemistry and electrophysiology tried to model the neonicotinoid-receptor interactions. Electrostatic 

interactions and possibly hydrogen bond formation were found to be important for the insecticidal 

activity [4]. 

A number of 26 N3-substituted imidacloprid insecticides, active against the housefly Musca 

Domestica, were previously studied using multiple linear regression (MLR) [5]. Good correlation of 

compound structural features with the insecticide activity was noticed, but models with modest 

predictive power. It was found that high values of squared octanol-water partition coefficients and of 

tautomers were favorable for the insecticidal activity. 

In the present study, a series of 30 neonicotinoid analogues tested against the cowpea aphids (Aphis 

craccivora) was modeled by molecular and quantum mechanics approaches. The structural descriptors 

derived from the minimum energy structures were correlated to the insecticidal activity using the 

multiple linear regression approach. Predictive models, useful to predict new insecticides, with 

improved activity were developed. 

 

Table 1. The neonicotinoid structures, their experimental insecticidal (pLC50) and predicted (pLC50 

pred) activity values for the best MLR1 model 

No Structure
 pLC50exp pLC50pred No Structure

 pLC50exp pLC50pred 

1 

 

5.43 4.92 16 

 

4.69 4.31 

2 

 

5.20 5.36 17 

 

4.61 4.49 

3 

 

5.74 5.35 18** 

 

3.63  

4 

 

5.33 5.42 19 

 

5.46 5.89 
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5 

 

4.98 5.35 20 

 

3.73 3.89 

6 

 

5.12 5.22 21 

 

4.01 3.89 

7* 

 

5.14 4.83 22* 

 

3.88 3.91 

8 

 

4.96 4.87 23 

 

4.02 3.95 

9 

 

5.35 4.91 24 

 

3.98 3.98 

10* 

 

5.37 4.96 25 

 

3.59 3.97 

11 

 

5.51 5.35 26 

 

3.24 3.12 

12* 

 

4.95 5.01 27 

 

2.94 3.08 
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13* 

 

4.12 4.03 28 

 

3.83 3.89 

14** 

 

3.16  29 

 

3.73 3.96 

15 

 

4.22 4.46 30** 

 

4.46  

* Test compounds included in the final MLR1 data set  

** Compounds excluded from the final MLR1 model 

2. Methods 

2.1. Definition of target property and molecular structures  

A set of 30 neonicotinoid analogues bearing nitroconjugated double bond and five-membered 

heterocycles and nitromethylene neonicotinoids containing a tetrahydropyridine ring with exo-ring 

ether modifications with known insecticidal activity was analyzed [6, 7]. The insecticidal activity 

against cowpea aphids (Aphis craccivora) activity data, expressed as pLC50 values (where LC50 

represents the median lethal concentration of the chemical in air that kills 50% of the test animals 

during the observation period) was used as dependent variable. 

In the first step, the structures of the investigated molecules were pre-optimized using the 

conformer plugin (with MMFF94 as molecular mechanics force field) of the MarvinSketch 

(MarvinSketch 15.2.16.0, ChemAxon Ltd. http://chemaxon.com) package. In the next step, the lowest 

energy conformers were refined using the semiempirical PM7 Hamiltonian [8] implemented in 

MOPAC 2016 program (MOPAC2016, James J. P. Stewart, Stewart Computational Chemistry, 

Colorado Springs, CO, USA, HTTP://OpenMOPAC.net (2016)). For the geometry optimization a 

gradient norm limit of 0.01kcal/Å was set. Structural 0D, 1D, 2D and 3D molecular descriptors were 

calculated for the lowest energy structures using the DRAGON (Dragon Professional 5.5, 2007, Talete 

S.R.L., Milano, Italy) and InstanJChem (Instant JChem (2012) version 5.10.0, Chemaxon, 

http://www.chemaxon.com) software. 

2.2. The Multiple Linear Regression (MLR) method 

Because the number of computed descriptors is too high (1624 descriptors) compared to the number 

of compounds (N = 30), a proper variable selection method was compulsory. The Genetic Algorithm 

(GA) is a trustworthy and extensively used variable selection method [9]. The QSARINS v. 2.1 

program [10] uses GAs to choose the meaningful descriptors that influence the variation of biologic 

activity of the compounds. The following parameters were employed: the RQK fitness function with 
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leave-one-out cross-validation correlation coefficient as constrained function to be optimized, a 

crossover/mutation trade-off parameter of T = 0.5 and a model population size of P = 50.  

2.3. Model validity 

The neonicotinoid derivatives were divided into training and test sets by random split, taking out 

18.5% of the total number of compounds (no. 7, 10, 12, 13, 22), while the remaining 81.5% were used 

as training set. The model’s predictability was tested using the 2

1FQ [11]; 2

2FQ [12]; 
2

3FQ  [13] and the 

concordance correlation coefficient (CCC) [14] (having the thresholds values higher than 0.85, as they 

have been rigorously determined by a simulation study [15])-external validation parameters. 

Moreover, the predictive power of the QSAR models was evaluated based on the predictive 

parameter 2

mr  (with a lowest threshold value of 0.5 to be accepted) [16].  

The model robustness (overfit) was tested using the Y-randomization test. The dependent variable is 

arbitrarily mixed and a model is built using the same X matrix of molecular descriptors. The obtained 

MLR models (after 2000 randomizations) must have minimal r
2
 (correlation coefficient) and q

2
 (cross-

validation coefficient) values [17].  

The data over fitting and model applicability was checked by comparing the root-mean-square 

errors (RMSE) and the mean absolute error (MAE)
 
of the training and validation sets [18]. 

For internal validation results several measures of robustness were employed: Y-scrambling [19], 

adjusted correlation coefficient ( 2

adjr ) and q
2
 (leave-one-out,

2

LOOq , and leave-more-out, 
2

LMOq ) cross-

validation coefficient.  

The Multi-Criteria Decision Making (MCDM) validation criteria [20], having values between 0 (the 

worst) and 1 (the best), is used to summarize the performance of MLR models. To every validation 

criteria a desirability function is associated, and MCDM values are calculated from the geometric 

average of all the desirability function values. In this study, the best MLR models were chosen from 

the ‚MCDM all’ scores, based on the fitting, cross validated and external criteria. 

3. Results and Discussion 

The data was normalized using the autoscaling method:  

m

mmj

mj
S

XX
XT


   (1)  

where for each variable m, XTmj and Xmj are the j values for the m variable after and before scaling, 

respectively, mX is the mean, and Sm is the standard deviation of the variable. 

Three compounds (14, 18 and 30) were found to be outliers, having the standardized residual values 

greater than 2.5 standard deviation units and were not included in the final MLR models. 

Variable selection using the genetic algorithm was employed to build several MLR models. The 

statistical results for model fitting and predictivity are included in Tables 2-4. 
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Table 2. Fitting and cross-validation statistical results of the MLR models (training set)* 

 

Model 
2

trainingr  
2

LOOq  
2

LMOq  
2

adjr  RMSEtr MAEtr CCCtr 
2

scrr  
2

scrq  SEE F 

MLR1 0.896 0.853 0.845 0.885 0.261 0.216 0.945 0.095 -0.220 0.281 81.61 

MLR2 0.887 0.851 0.841 0.876 0.271 0.220 0.940 0.095 -0.228 0.292 74.90 

MLR3 0.808 0.770 0.763 0.799 0.354 0.302 0.894 0.045 -0.157 0.372 84.35 

MLR4 0.824 0.786 0.779 0.815 0.340 0.294 0.904 0.049 -0.152 0.356 93.58 

* 
2

trainingr
-correlation coefficient; 

2

LOOq
- leave-one-out correlation coefficient; 

2

LMOq
 leave-more-out 

correlation coefficient; 
2

adjr
-adjusted correlation coefficient; RMSEtr-root-mean-square errors; MAEtr-

mean absolute error; CCCtr-the concordance correlation coefficient; 
2

scrr
 and 

2

scrq
-Y-scrambling 

parameters; SEE-standard error of estimates; F-Fischer test. 

 

Table 3. MLR predictivity results (test set)* 

 

Model 
2

1FQ  2

2FQ  
2

3FQ  RMSEext MAEext CCCext 

MLR

1 

0.851 0.840 0.916 0.235 0.179 0.907 

MLR

2 

0.805 0.790 0.890 0.269 0.244 0.913 

MLR

3 

0.876 0.867 0.930 0.214 0.207 0.934 

MLR

4 

0.820 0.806 0.898 0.258 0.236 0.921 

* 2

1FQ ; 2

2FQ ;
2

3FQ -external validation parameters;  

   RMSEext-root-mean-square errors; MAEext -mean absolute error;  

    CCCext-the concordance correlation coefficient 

 

Table 4. The 
2

mr  predictivity parameters, ‘MCDM all’ score values and descriptors in the final MLR 

models* 

 

Model 
2

mr  MCDM all Descriptors included in the model* 

MLR1 0.810 0.878 nR06,  E3m 

MLR2 0.697 0.865 nCrs,  C-003 

MLR3 0.817 0.846 Strongest basic pKa 

MLR4 0.656 0.840 nCrs 

* nR06 – number of 6-membered rings, E3m- 3rd component accessibility directional WHIM 

index/weighted by atomic masses, nCrs- number of ring secondary C(sp3), C-003 - CHR3 (atom-

centred fragments), strongest basic pKa- the basic pKa value for the first strength index. 
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 In order to verify the reliability of the developed equations, experimental versus predicted 

pLC50 values, Williams plots and Y-scramble plots for the MLR1 best model are presented in Figures 

1, 2 and 3, respectively. 

 

 
 

Figure. 1. Plots of experimental versus predicted pLC50 values for the MLR1 model predicted by 

the model (left) and by the leave-one-out (right) cross-validation approach (yellow circles-training 

compounds, blue circles-test compounds). 

 

 The Williams plot is used to identify compounds with the greatest structural influence (hi > h
*
; 

hi =leverage of a given chemical; h
*
= the warning leverage) in the MLR model.  The applicability 

domain of the MLR models was considered in the range of ±2.5σ (the MLR1 leverage threshold h* = 

0.409). All compounds in the dataset are within the applicability domain of the MLR1 model, as 

presented in Figure 2. 

 

Figure. 2. Williams plot predicted by the MLR1 model (yellow circles-training compounds, blue 

circles-test compounds). 
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In the y-scrambling test performed for the MLR models, a significant low scrambled r
2
 (

2

scrr ) and 

cross-validated q
2
 (

2

scrq ) values were obtained for 2000 trials. Figure 3 suggest that in case of all the 

randomized models, the values of 
2

scrr  and 
2

scrq  for the MLR1 model were < 0.5 (
2

scrr / 2

scrq of 0.095/-

0.220). The low calculated 
2

scrr  and 
2

scrq values indicate no chance correlation for all MLR chosen 

models (Table 2). 

 

Figure. 3. Y-scramble plots for the MLR1 model. 

 

 A correlation matrix of the selected molecular descriptors from the MLR1 model is presented 

in Table 5. The two selected descriptors are not intercorrelated. 

 

Table 5. Correlation matrix of the selected descriptors included in the best MLR1 model 

 

 nR06 E3m 

nR06 1  

E3m 0.247 1 

 

The best MLR1 model has two descriptors: the constitutional nR06 descriptor, which represents the 

number of 6-membered rings, and the WHIM E3m descriptor (3rd component accessibility directional 

WHIM index / weighted by atomic masses). Increase of E3m is beneficial for the insecticidal activity. 

The presence of less 6-membered rings in the structure favors the insecticide action. Interestingly is 

that MLR models including only one descriptor, e.g. the number of ring secondary C(sp3) or strongest 

basic pKa descriptors (for both parameters lower values raise the insecticidal activity), gave good 

statistical results and models with predictive power. 

The MLR models presented in this study can be used for prediction of new neonicotinoid structures, 

active as insecticides for the cowpea aphids. 
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4. Conclusions 

In the current study, quantitative relationships between the molecular structure and cowpea aphids 

(Aphis craccivora) inhibitory activity of neonicotinoids analogues were verified by the MLR approach. 

The semiempirical quantum chemical PM7 method was employed for structure optimization. The 

genetic algorithm was used for variable selection. The final MLR models have good statistical 

parameters and predictive power. Structural features, such as the number of 6-membered rings, basic 

pKa capacity and the number of ring secondary C(sp3) are particulary significant in the design of 

novel neonicotinoids with scaffold containing nitroconjugated double bond and five-membered 

heterocycles and nitromethylene compounds containing a tetrahydropyridine ring with exo-ring ether 

modifications. 
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