Investigation of the Appel reaction with bromotrichloromethane-triphenylphosphine $\left(\mathrm{BrCCl}_{3} / \mathrm{PPh}_{3}\right)$

Abdullah Al-Hemyari, Muna Bufaroosha, Thies Thiemann*
Department of Chemistry, United Arab Emirates University, Al Ain, United Arab Emirates. Email: thies@uaeu.ac.ae; thiesthiemann@yahoo.de

Abstract

The Appel reaction of an alcohol with $\mathrm{CCl}_{4} / \mathrm{PPh}_{3}$ and with $\mathrm{CBr}_{4} / \mathrm{PPh}_{3}$ produce alkyl chlorides and alkyl bromides, respectively. It was found that in the case of using $\mathrm{BrCCl}_{3}-\mathrm{PPh}_{3}$, a mixture of alkyl chlorides and alkyl bromides are formed. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ were used as solvents, where the reaction was found to be solvent-dependent.

Keywords: Appel reaction, bromotrichloromethane, alkyl halide

Introduction

The original Appel reaction is a transformation that converts alcohols to alkyl halides, using triphenylphosphine - tetrachlorocarbon $\left(\mathrm{PPh}_{3}-\mathrm{CCl}_{4}\right)$ [1] to obtain alkyl chlorides or, more rarely, triphenylphosphine - tetrabromomethane $\left(\mathrm{PPh}_{3}-\mathrm{CBr}_{4}\right)$ [2]. In recent times, the combination triphenylphosphine - bromotrichloromethane $\left(\mathrm{PPh}_{3}-\mathrm{BrCCl}_{3}\right)$ has also been used as a reagent in reactions such as the preparation of benzonitriles from benzaldoximes and benzamides [3], the esterification and amidation of carboxylic acids, the preparation of acid anhydrides and O acyloximes from carboxylic acids [4] and the preparation of 1,1-haloethenes from carbaldehydes in a Corey-Fuchs type transformation [5], all reactions which had been carried out previously with $\mathrm{PPh}_{3}-\mathrm{CCl}_{4}$ [1]. There is one report on an Appel type conversion of benzyl alcohols to benzyl chlorides using BrCCl_{3} with an excess of PPh_{3}. The reason of replacing CCl_{4} with CBrCl_{3} is that CCl_{4} is an ozone class 1 depletor with an ozone depletion capacity of 1.08 (WMO 1991) to 1.1 (UNEP 1996) vs. chlorofluorocarbon CFC-11 [6] and thus is banned for most industrial uses. Although a bromo radical has a greater ozone scavenger potential than a chloro radical, bromotrichloromethane has a small but appreciable dipole moment (0.40 D), and this decreases its residency time in the atmosphere in comparison to CCl_{4} significantly [7]. In the following, the authors re-evaluate the use of $\mathrm{BrCCl}_{3}-\mathrm{PPh}_{3}$ in the reaction of alcohols to alkyl halides in the original Appel transformation to understand the selectivity of the halide transfer bromide vs. chloride.

Experimental

Melting points were measured with a Stuart SMP10 melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR (at 400 MHz) and ${ }^{13} \mathrm{C}$ NMR (at 100.5 MHz) spectra were taken on a Varian 400 MHz spectrometer. IR measurements were performed on a Thermo Nicolet FT-IR spectrometer, model Nexus 470. Column chromatography was carried out on recycled silica gel Merck grade 9385 (pore size $60 \dot{A}, 230-400$ mesh, Aldrich). 11-Bromoundecanol (5, Sigma-Aldrich), triphenylphosphine (Aldrich), bromotrichloromethane (Aldrich), tetrachlorocarbon (Riedel de Haen), cholesterol (11, Fluka), sitosterol (13, Merck), 2-phenylethanol (1, Merck), 2-octanol (3, Sigma-Aldrich), 4-bromobenzyl bromide (15-Br, Aldrich), 4-bromobenzyl alcohol (Fluka), and citronellol (9, Merck Schuchardt) were acquired commercially. 4-Phenylbutan-2-ol (7) was
prepared from 4-phenylbutan-2-one (benzylacetone, Fluka) $\left(\mathrm{NaBH}_{4}, \mathrm{MeOH}\right)$ and 4-bromobenzyl chloride (15-Cl) from 4-bromobenzyl alcohol $\left(\mathrm{CCl}_{4}, \mathrm{PPh}_{3}\right)$.

General procedure: $\mathrm{To} \mathrm{PPh}_{3}(960 \mathrm{mg}, 3.66 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ is added dropwise $\mathrm{BrCCl}_{3}(760 \mathrm{mg}, 3.83 \mathrm{mmol})$ and the resulting solution is stirred at rt for 25 min ., during which time it turns from colorless to yellow to orange-yellow. Thereafter, the alcohol (2.55 mmol) is added by syringe. The reaction is stirred for 14 h at rt . Then, the solution is submitted directly to rapid chromatography on silica gel (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Competitive reaction of 4-bromobenzyl bromide (xx) and 4-bromobenzyl chloride with PPh3: To a mixture of 4-bromobenzyl chloride ($\mathbf{1 5 - C l}, 780 \mathrm{mg}, 3.8 \mathrm{mmol}$) and 4-bromobenzyl bromide ($\mathbf{1 5 -}$ Br, $950 \mathrm{mg}, 3.8 \mathrm{mmol}$) in dry chloroform (5 mL) was given triphenylphosphine $\left(\mathrm{PPh}_{3}, 980 \mathrm{mg}\right.$, 3.8 mmol). Reaction aliquots were taken at 30 min ., 1 h , and 2 h and analyzed directly by ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Selected spectroscopic data:

1-Bromo-11-chloroundecane (6-Cl) [8]. - $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.27(\mathrm{~m}, 10 \mathrm{H}), 3.40\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right.$, $\left.{ }^{3} J=7.2 \mathrm{~Hz}\right), 3.53\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2},{ }^{3} J=\mathrm{Hz}\right) . \delta \mathrm{C}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 26.9,28.2,28.7,28.9,29.4$, 29.4(5), 32.6, 32.8, $34.1\left(\underline{C H}_{2} \mathrm{Br}\right), 45.2\left(\mathrm{CH}_{2} \mathrm{Cl}\right)$.

1,11-Dibromoundecane (6-Br) [9]. - $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.28-1.31(10 \mathrm{H}, \mathrm{m}), 1.41-1.43(4 \mathrm{H}$, m), $1.81-1.88(4 \mathrm{H}, \mathrm{m}), 3.40\left(4 \mathrm{H}, \mathrm{t}, 2 \mathrm{CH}_{2},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}\right) ; \delta \mathrm{C}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 28.2$ (2C), 28.7 (2C), 29.4 (3C), 32.8 (2C), 34.1 (2C).

3-Hydroxybutylbenzene (4-phenylbutan-2-ol) (7) [9]. - $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.24$ (3H, d, ${ }^{3} \mathrm{~J}=$ $\left.6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.75-1.83(2 \mathrm{H}, \mathrm{m}), 2.15(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 2.65-2.82(2 \mathrm{H}, \mathrm{m}), 3.82-3.87(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHOH}), 7.19-7.23(3 \mathrm{H}, \mathrm{m}), 7.29-7.32(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 23.6\left(\mathrm{CH}_{3}\right), 32.2\left(\mathrm{CH}_{2}\right)$, $40.8\left(\mathrm{CH}_{2}\right), 67.5(\mathrm{CHCl}), 125.8(\mathrm{CH}), 128.4(4 \mathrm{C}, \mathrm{CH}), 142.1\left(\mathrm{C}_{\text {quat }}\right)$.

3-Chlorobutylbenzene (8-Cl) [10]. - $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.57\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.03-$ $2.09(1 \mathrm{H}, \mathrm{m}), 2.75-2.94(2 \mathrm{H}, \mathrm{m}), 4.01-4.06(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCl}), 7.23-7.26(3 \mathrm{H}, \mathrm{m}), 7.32-7.36$ $(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 25.5\left(\mathrm{CH}_{3}\right), 32.9\left(\mathrm{CH}_{2}\right), 42.0\left(\mathrm{CH}_{2}\right), 58.0$ $(\mathrm{CHCl}), 126.1(\mathrm{CH}), 128.5(2 \mathrm{C}, \mathrm{CH}), 128.6(2 \mathrm{C}, \mathrm{CH}), 141.1\left(\mathrm{C}_{\text {quat }}\right)$.

3-Bromobutylbenzene (8-Br) [11]. - $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.75\left(3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.14$ $-2.18(2 \mathrm{H}, \mathrm{m}), 2.72-2.91(2 \mathrm{H}, \mathrm{m}), 4.07-4.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHBr}), 7.21-7.24(3 \mathrm{H}, \mathrm{m}), 7.29-7.31$ $(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 26.6\left(\mathrm{CH}_{3}\right), 34.0\left(\mathrm{CH}_{2}\right), 42.7\left(\mathrm{CH}_{2}\right), 51.0(\mathrm{CHBr}), 126.1(\mathrm{CH})$, $128.5(4 \mathrm{C}, \mathrm{CH}), 141.0\left(\mathrm{C}_{\text {quat }}\right)$.

Cholesteryl chloride (3β-chlorocholest-5-ene, 12-Cl) [12]. - $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.68(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 0.87\left(\mathrm{dd},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 6 \mathrm{H}\right), 0.90\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.95-1.05(\mathrm{~m}, 3 \mathrm{H}), 1.04(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.07-1.22(\mathrm{~m}, 7 \mathrm{H}), 1.22-1.73(\mathrm{~m}, 10 \mathrm{H}), 1.79-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.95-2.12(\mathrm{~m}, 3 \mathrm{H}), 2.14$ $-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{tt}, J=12.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dt}, \mathrm{J}=5.3 \mathrm{~Hz}$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), \delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.9,18.8,19.4,21.2,22.7,22.8,23.9,24.5,28.2,28.3$, $31.3,31.9$ (2C), $35.9,36.3,36.4,39.3,39.6,39.8,42.5,43.6,50.1,56.2,56.9,60.4,122.6,141.0$.

Cholesteryl bromide (3β-bromocholest-5-ene, 12-Br) [13]. - $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 0.67 (s, 3H), $0.86\left(\mathrm{dd},{ }^{3} J=6.4 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 6 \mathrm{H}\right), 0.91\left(\mathrm{~d},{ }^{3} J=6.6 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.93-1.02(\mathrm{~m}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H})$, $1.05-1.20(\mathrm{~m}, 7 \mathrm{H}), 1.21-1.70(\mathrm{~m}, 10 \mathrm{H}), 1.77-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.93-2.09(\mathrm{~m}, 3 \mathrm{H}), 2.13-2.23$ $(\mathrm{m}, 1 \mathrm{H}), 2.58(\mathrm{ddd}, J=13.6 \mathrm{~Hz}, 4.7 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.79(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{tt}, J=12.3 \mathrm{~Hz}$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dt}, J=5.3 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}), \delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.8,18.7,19.2,20.9$, 22.6, 22.8, 23.8, 24.3, 28.0, 28.2, 31.7 (2С), 31.8, 34.4, 35.8, 36.2, 36.4, 39.1, 39.6, 39.7, 42.3, 44.3, 52.7, 56.1, 56.7, 122.4, 141.5.

Results and Discussion

Scheme 1. Appel reaction of 2-phenylethanol (1) with $\mathrm{BrCCl}_{3}-\mathrm{PPh}_{3}$.
Earlier we had already reported that in our hands the reaction of 2-phenylethanol (1) with $\mathrm{PPh}_{3}-$ BrCCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt led to a mixture of 2-phenylethyl bromide (2-Br) and 2-phenylethyl chloride (2-Cl) in a 6:4 ratio (Scheme 1) [14]. Thereafter, the authors investigated whether this trend holds true with other substrates (Table 1). As can be seen, in all reactions of alkanols with $\mathrm{PPh}_{3}-\mathrm{BrCCl}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt mixtures of alkyl bromides and alkyl chlorides are produced, where the alkyl bromides are often but not exclusively formed in slight excess.

Table 1. Appel reaction of primary and secondary alcohols with $\mathrm{BrCCl}_{3}-\mathrm{PPh}_{3}$.

In all instances and for comparison, the substrates used were also reacted with the system $\mathrm{PPh}_{3}{ }^{-}$ CCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the alkyl chlorides. Also, steroidal alcohols cholesterol (11) and sitosterol (13) have been submitted to $\mathrm{PPh}_{3}-\mathrm{BrCCl}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to again show mixtures of steroidal chlorides and bromides (Table 2). Aliquots were drawn from the selected reaction mixtures. It could be shown that after the alcohol was consumed no detectable change in the ratio of alkyl chloride to alkyl bromide occurred. Although the reactions were found to be nearly complete after 90 min ., the reaction mixtures were stirred for $14 \mathrm{~h}(\mathrm{at} \mathrm{rt})$ for convenience and to ensure complete reaction.

Table 2. Appel reaction of steroidal alcohols with $\mathrm{BrCCl}_{3}-\mathrm{PPh}_{3}$.
The reported exclusive isolation of benzyl chlorides from the reaction of benzyl alcohols with $\mathrm{BrCCl}_{3}-\mathrm{PPh}_{3}$, but with an excess of PPh_{3} can most likely be explained by the higher reactivity of the benzyl bromide towards PPh_{3} as compared to the benzyl chloride. In order to investigate the comparative reactivities of benzyl chlorides and benzyl bromides towards PPh_{3}, a $1: 1$ mixture of
 of PPh_{3} at rt , albeit in CHCl_{3} (Scheme 2). After 30 min ., 1 h and $2 \mathrm{~h},{ }^{1} \mathrm{H}$ NMR samples were taken, which showed a higher reactivity of the 4-bromobenzyl bromide ($\mathbf{1 5 - B r}$) in this competitive experiment, where mainly 4-bromobenzyl chloride remained unreacted (15-Cl/15-Br: 4.46/1.70
[30 min.], 3.18/0.76 [1h], 3.24/0.53 [2h]). After 2h, excess PPh_{3} was added, which resulted in further increase in the ratio of the remaining substrates ($\mathbf{1 5 - C l} / \mathbf{1 5}-\mathbf{B r}: 2.94 / 0.25[2 \mathrm{~h}+0.5 \mathrm{~h}]$).

Scheme 2. Competitive reaction of 4-bromobenzyl bromide (15-Br) and 4-bromobenzyl chloride ($\mathbf{1 5 - C l}$) with triphenylphosphine

When changing the solvent from dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, the reaction became more selective, producing mainly alkyl bromides. This trend was noted for both secondary alcohols and primary alcohols. The accepted mechanism of the Appel reaction is provided in Scheme 3. Currently, the authors investigate, if the observed solvent effect leads to further details regarding the mechanism.

Scheme 3. General reaction mechanism of the Appel reaction.

Conclusions

The reaction of alkanols with $\mathrm{BrCCl}_{3}-\mathrm{PPh}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gives a mixture of alkyl bromides and alkyl chlorides. Most likely, the predominant isolation of benzyl chlorides from the reaction of benzyl alcohols with BrCCl_{3} and an excess of PPh_{3} can be explained with the higher reactivity of benzyl bromides as compared to benzyl chlorides in regard to PPh_{3} to form the corresponding phosphonium bromides. A change of solvent to $\mathrm{CH}_{3} \mathrm{CN}$ leads to predominately the alkyl bromides with $\mathrm{BrCCl}_{3}-\mathrm{PPh}_{3}$.

References

[1] R. Appel, Angew. Chem. Int. Engl. 1975, 14, 801 - 811.
[2] T. W. Baughman, J. C. Sworen, K. B. Wagener, Tetrahedron 2004, 60, 10943 10948.
[3] Y. Al Jasem, M. Barkhad, M. Al Khazali, H. Pervez Butt, N. Ashraf El-Khwass, M. AlAzani, B. al Hindawi, T. Thiemann, J. Chem. Res., 2014, 38, $80-84$.
[4] M. Al-Azani, M. al-Sulaibi, N. al Soom, Y. Al Jasem, B. Bugenhagen, B. Al Hindawi, T. Thiemann, Compte Rend. Chimie 2016, 19, 921-932.
[5] S. G. Newman, C. S. Brian, D. Perez, M. Lautens, Synthesis 2011, 342 - 346.
[6] Environmental Health Criteria 208, drafted by J. de Fouw, WHO, Geneva, 1999.
[7] An atmospheric half life time of 85 years has been ascribed to CCl_{4} while BrCCl_{3} has a half life time of 44 years. For CCl_{4} : K. Dow, T. Downing, The Atlas of Climate Change, UC Press, 2006. For BrCCl_{3} : R. Atkinson, D. L. Bauch, R. A. Cox, R. H. Hamspon, J. A. Kerr, J. Troe, Atmos. Environ. 1992, 26A, 1187 - 1230.
[8] G. Deshayes, K. Poelmans, I. Verburggen. C. Camacho-Camacho, P. Degée, V. Pinoie, J. C. Martins, M. Piotto, M. Biesemans, R. Willem, P. Dubois, Chem. Eur. J. 2005, 11, 4552-4561.
[9] AIST: Integrated Spectral Database System of Organic Compounds
[10] B. Gaspar, E. N. Carreira, Angew. Chem. Int. Ed. Engl. 2008, 47, 5758 - 5760.
[11] D. Jan, L. Delaude, F. Simal, A. Demonceau, A. F. J. Noels, J. Organomet. Chem. 2000, 606, 55-64.
[12] J. Kowalski, Z. Łotowski, J. W. Morzycki, J. Płoszyńska, A. Sobkowiak, A. Z. Wilczeska, Steroids 2008, 73, 543-548.
[13] H. A. Kalkeren, S. H. A. M. Leenders, C. Rianne, A. Hommerson, F. P. J. T. Rutjes, F. L van Delft, Chem. Eur. J. 2011, 17, 11290.
[14] T. Thiemann, M. al-Sulaibi, Y. Al Jasem, B. al Hindawi, ECSOC 15, a002, 2011.

