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Abstract: Important information about the possible reactions and other propeties of a 

molecule can be determined by the aromaticity. Therefore, measurement of aromaticity is 

very important. Although there are a few applications for the determination of aromaticity, 

Nucleus Independent Chemical Shift (NICS) calculations provide the easiest computation and 

best approach to the discussion. Phosphazene is a nonaromatic material with structural 

resemblance to benzene. Phosphazenes nonaromatic character can be modified by subtitution 

of the hydrogen atoms on phosphorous atoms with electron donating or withdrawing groups. 
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1. Introduction 

Aromaticity has still been considered as an actively investigated area of chemistry. There are 

a few criterion for monocyclic compounds to be promoted as aromatic; they possess uncut 

conjugation in the main circle with the proper number of π-electrons (i.e., the Hückel rule). 

While this criteria work sufficiently to predict the aromaticity of neutral and charged ring 

systems, it can not be an obvious indicator of aromaticity for more complex structures. 

 Aromaticity is described by a combination of properties in cyclic conjugated 

compounds. Generally, aromaticity has been expressed in terms of energetic, structural and 

magnetic criteria (Minkin, Glukhovtsev & Simkin, 1994; Schleyer & Jiao, 1996; 

Glukhovtsev, 1997; Krygowski, Cyranski, Czarnocki, Hafelinger & Katritzky, 2000; 

Schleyer, 2001; Cyranski, Krygowski, Katritzky & Schleyer, 2002). In 1996, Schleyer 

introduced an easy but an efficient way for definition aromaticity: Nucleus-independent 

chemical shift (NICS) (Schleyer, Maerker, Dransfeld, Jiao & Hommes, 1996), which is the 

calculated value of the negative magnetic shielding at some selected point in space, usually, at 

center of a ring or cage. Negative NICS data indicate aromaticity (-11.4 for naphthalene) and 

positive NICS data mean antiaromaticity (28.8 for cyclobutadiene) while small values of 



NICS are accepted as an indicator for nonaromaticity (-3.1 for 1,3-cyclopentadiene). NICS 

might be a useful indicator of aromaticity that often correlates well with the other energetic, 

structural and magnetic criteria for aromaticity (Jiao & Schleyer, 1998; Schleyer, Kiran, 

Simion & Sorensen, 2000; Quinonero, et al. 2002; Patchkovskii & Thiel, 2002). Resonance 

energies and magnetic susceptibilities can be used to define the overall aromaticity of a 

polycyclic compound, but do not provide information about the individual rings. However, 

NICS is an effective probe for local aromaticity of separate rings of polycycles. 

 In order to enlighten the effect of substitution on the phosphazene skeleton, we have 

applied NICS calculations using Density Functional Theory. The computed NICS values have 

been used to compare the stabilities of the structures. 

 

2. Method of calculation 

The ground state optimizations of phosphazene derivatives leading to minimum 

energy geometry were achieved by using MM2 method followed by semi-empirical PM3 self-

consistent field molecular orbital (SCF MO) method (Stewart, 1989; Stewart, 1989) at the 

restricted level (Leach, 1997). Then, further optimizations were done within the application of 

density functional theory (DFT, B3LYP) (Kohn & Sham, 1965; Parr & Yang, 1989) at the 

level of 6-31G(d,p) (restricted closed-shell) (Stewart, 1989). The hybrid functional term of 

B3LYP is a combination of hybrid Hartree–Fock and local spin density (LSD) exchange 

functions with Becke’s gradient correlation to LSD exchange (Becke, 1988). B3LYP is 

formed by Vosko, Wilk, Nusair (VWN3) local correlation functional (Vosko, Vilk & Nusair, 

1980) and Lee, Yang, Parr (LYP) correlation correction functional (Lee, Yang & Parr, 1988). 

The BLYP method shows a better improvement over the SCF-HF results. Its predictions are 

in quite good agreement with experiment (Scuseria, 1992; Sosa & Lee, 1993; Wilson, Amos 

& Handy, 2000). 

 The normal mode analysis for each structure did not yield any imaginary frequencies 

for the 3N-6 vibrational degrees of freedom, where N is the number of points in the system. 

This shows that the structure of each optimized structure corresponds to at least a local 

minimum on the potential energy surface. 

 Absolute NMR shielding values (Pulay, Hinton & Wolinski, 1993) were computed 

using the Gauge-Independent Atomic Orbital method (Hehre, Radom, Schleyer & Pople, 

1986) with the restricted closed shell formalism applying 6-31+G(d,p) basis set over 

B3LYP/6-31+G(d,p) geometry optimized structures. NICS values were obtained by 

calculating absolute NMR shielding at the ring centers, NICS(0). 



 The ground state geometry optimizations and NICS computations of all the 

compounds have been performed by the use of Gaussian 09 package program (Frisch et al., 

2010). 

3. Results and Discussion 

Investigation of the effect of substitution of an electron donating or electron 

withdrawing groups with the hydrogens connected to the parent circle of well-known 

aromatic or nonaromatic compounds has been attractive scientists for both theoretical and 

experimental studies. In this work, phosphazenes aromaticity has been tried to increase with 

substitution with NO2, Ph and OMe groups theoretically, by the application of B3LYP/6-

31+G(d,p) level of theory in order to judge their ground state stabilities and aromaticities. 

 The first step of the current study was obtaining the ground state geometries of all the 

compounds using B3LYP/6-31+G(d,p) level of theory. The geometry optimized structures of 

phosphazenes can be seen in Figure 1. 

 

 

Figure 1. Geometry optimized structures of Phosphazene derivatives 

 

 

 

 

 



Table 1. NICS data for phosphazene derivatives (ppm). 

 

Structure NICS 

Phosphazene -1.04 

P-H-OMe -2.53 

P-OMe -5.64 

P-Ph -1.35 

P-NO2 -4.59 

 

 In Table 1, the NICS data for the present systems are tabulated. Phosphazene itself is 

a nonaromatic compound with a NICS data of -1.04 ppm. The aromaticity of the parent 

system is slightly increased by replacement of one of the hydrogens on each phosphorous (P-

H-OMe) by methoxy groups. Electron donating ability of methoxy groups of P-OMe made 

the phosphazene system almost an aromatic compound by enhancing the NICS data up to -

5.64 ppm. Phenyl substitution (P-Ph) on the other hand, had no effect on the aromaticity of 

the parent compound. The nonplanar alignment of the phenyl groups has been thoughout to be 

responsible for this behaviour. Finally, a very strong electron withdrawing NO2 groups were 

substituted by the hydrogens by the idea that they could pull the electrons towards themselves 

so that electrons located on nitrogens have been gained by the π-system of the ring. P-NO2 

molecule showed an enhanced aromaticity as expected (Table 1).  
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