
Design of Novel Tubulin Polymerization Inhibitors Based on CA-4

Dong-Jun Fu

New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; zzufdj@sina.com

Combretastatin A-4(CA-4), a group of polyhydroxylated stilbenes isolated from the bark of the South African tree Combretum Caffrum, is a highly effective natural tubulin-binding molecule affecting microtubule dynamics by binding to the colchicines site. Its water soluble phosphate ester (CA-4P) is under evaluation in phase 3 trials for treatment of anaplastic thyroid cancer and in phase 2 trials for non-small cell lung cancer and platinum-resistant ovarian cancer, thus stimulating significant interest in a variety of combretastatin A-4 analogues. Unfortunately, a problem have limited their use as therapeutic agents. The *cis* configuration is biologically active, with the *trans* form showing significantly inactive. The active *cis* double bond in CA-4 is readily converted to the more stable *trans* isomer during storage or metabolism by heat, light, and protic media , resulting in a dramatic decrease in antitumor activity. Thus, it is necessary to design and discover novel *cis* configuration inhibitors based on CA-4.

 β -Lactam skeleton has attracted much attention from medicinal chemists for many years because of their numerous biological activities, especially their antitumor activity. Importantly, some β -lactam analogues were shown to cause apoptosis in cancer cells through induction of microtubule disorganization and mitotic catastrophe. In our lab, a series of β lactam-azide derivatives as tubulin polymerization inhibitors were synthesized and evaluated their antitumor activity in vitro and in vivo. In addition, the detailed structure activity relationships in five regions of β -lactam-azides were explored to provide further insight for developing more efficient tubulin targeting and antiproliferative agents for cancer therapy.

Keywords: Combretastatin A-4; cis configuration; antitumor.

Acknowledgments: Dong-Jun Fu is grateful for the financial support from the Outstanding PhD Training Program of Zhengzhou University and the China Scholarship Council (CSC).

Reference:

[1] *Dong-Jun Fu*, Ji-Feng Liu, Ruo-Han Zhao, Jia-Huan Li, Sai-Yang Zhang and Yan-Bing Zhang. Design and Antiproliferative Evaluation of Novel Sulfanilamide Derivatives as Potential Tubulin Polymerization Inhibitors. *Molecules*. 2017, *22*, 1470.

[2] **Dong-Jun Fu**, Ling Fu, Ying-Chao Liu, Jun-Wei Wang, Yu-Qing Wang, Bing-Kai Han, Xiao-Rui Li, Chuang zhang, Feng Li, Jian Song, Bing Zhao, Ruo-Wang Mao, Ruo-Han Zhao, Saiyang Zhang, Li Zhang, Yan-Bing Zhang, Hong-Min Liu. Structure-Activity Relationship Studies of β-Lactam-azide Analogues as Orally Active Antitumor Agents Targeting the Tubulin Colchicine Site. *Scientific Reports.* 2017, *7*, 12788