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Graphical Abstract  

 

Abstract.  Moving Average (MA) operators are 
used in Box-Jenkins’s ARIMA models in time 
series analysis (1). We can used MA operators 
of structural descriptors are useful to quantify 
multiple conditions or parameters in complex 
datasets in Omics, Medicinal Chemistry, 
Nanotechnology, etc. (2-7). Speck-Planche and 
Cordeiro have also used this kind of models in 
multiple problems (8-11). In this work, we 
develop a desktop application that allows 
applying mathematical and statistical 
calculations in batches, on input and output 
variables selected by the user. From the obtained 
result a percentage sample of data is taken with a 
random contrast on which Machine Learning 
algorithms are applied  

 
Introduction  
In principle, we can calculate numerical parameters to quantify the structure of chemical compounds, 

peptides, and/or proteins. We can also use them as input variables for Machine Learning (ML) 
algorithms in order to predict the biological properties of these drugs, peptides, or proteins (13-29). On 
the other hand, Perturbation Theory (PT) models allow us to predict the solutions to a query problem 
(q) based on a previous known solution for a similar problem or problem of reference (r). In a recent 
works, we outlined a new type of ML method called PTML (PT + ML) based on both kind of models 
with applications in drug discovery and proteome research (25, 30). The PTML method uses different 
kind of PT operators to predict the properties of one system based on the properties of a system of 
reference. For instance, Moving Average (MA) operators used in Box-Jenkins’s ARIMA models in 
time series analysis (31). We have used MA operators of structural descriptors are useful to quantify 
multiple conditions or parameters in complex datasets in Omics, Medicinal Chemistry, 
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Nanotechnology, etc. (32-37). Speck-Planche and Cordeiro have also used this kind of models in 
multiple problems (38-41).  
 Discussion 
González-Díaz et al. introduced a general-purpose PTML modeling technique useful to quantify the 
effect of perturbations in complex bio-molecular systems including DPINS and other networks (48, 
49). Using PTML the model we can predict the values of the scoring function f(εij)newfor the DPI. The 
PTML model start using as input with the expected value of biological activity f(εij)exptfor one 
compound assayed in the conditions cjand add the values of the PT operators ΔDk(mi, cj). The expected 
value f(εij)expt= <εij>is the average value of the biological activity parameter εij for all cases in 
ChEMBL dataset with the same c0 = Activity parameter εij(Units).These PT operators added ΔDk(mi, 
cj) = Dk(mj) - <Dk(cj)>are intended to account for the changes (perturbations) in the system with 
respect to the expected values. Specifically, perturbations on thevalue of the molecular descriptors of 
the drug Dk(mj) with respect to the expected value<Dk(cj)>for a drug measured under the conditions of 
the experiment cj. These PT operators resemble the Box-Jenkins MA operators (25, 30). We use both 
Linear Discriminant Analysis (LDA) and Artificial Neural Network (ANN) algorithms to seek 
alternative linear and non-linear models (50). At follow, we depict the compact and developed forms 
of a PTML linearmodel: 
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Results and Discussion  
FRAMA, is a desktop application that supports different file formats, allows perform data 
preprocessing tasks on the selection of input and output variables, and its sub classification as grouping 
variables and continuous variables, where operations, operators and obtaining parametric values are 
applied, such as Mergin Data, Shannon Entropy, Z-Score, Moving Average, Euclidian Distance, 
among others. From the results obtained, a sample is selected for the application of Machine Learning 
algorithms on a sample of data 
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