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Abstract: Maize is the most commonly cultivated cereal in Africa in terms of land area and production. Low yields 13 

in this region are very often associated with issues related to low Nitrogen (N), such as low soil fertility or low 14 
fertilizer availability. Developing new maize varieties with high and reliable yields in actual field conditions using 15 
traditional crop breeding techniques can be slow and costly. Remote sensing has become an important tool in the 16 
modernization of field-based High Throughput Plant Phenotyping (HTPP), providing faster gains towards 17 
improved yield potential, adaptation to abiotic (water stress, extreme temperatures, salinity) and biotic 18 
(susceptibility to pests and diseases) limiting conditions, and even quality traits. We evaluated the performance 19 
of a set of remote sensing indices derived from Red-Green-Blue (RGB) images and the performance of the field-20 
based Normalized Difference Vegetation Index (NDVI) and SPAD as phenotypic traits and crop monitoring tools 21 
for assessing maize performance under managed low nitrogen conditions. Phenotyping measurements were 22 
conducted on maize plants at two different levels: on the ground and from an airborne UAV (Unmanned Aerial 23 
Vehicle) platform. For the RGB indices assessed at the ground level, the strongest correlations compared to yield 24 
were observed with Hue, GGA (Greener Green Area) and GA (Green Area) at the ground level while GGA and 25 
CSI (Crop Senescence Index) were better correlated with grain yield at the aerial level. Regarding the field sensors, 26 
SPAD exhibited the closest correlation with grain yield, with a higher correlation when measured closer to 27 
anthesis. Additionally, we evaluated how these different HTPP data contributed to the improvement of 28 
multivariate estimations of crop yield in combination with traditional agronomic field data, such as ASI (Anthesis 29 
Silking Data), AD (Anthesis Data), and Plant Height (PH). All multivariate regression models with an R2 higher 30 
than 0.50 included one or more of these three agronomic parameters as predictive parameters, but with RGB 31 
indices at both levels increased to R2 over 0.60. As such, this research suggests that traditional agronomic data 32 
provide information related to grain yield in abiotic stress conditions, but that they may be potentially 33 
supplemented by RGB indices from either ground or UAV phenotyping platforms. Finally, in comparison to the 34 
same panel of maize varieties grown under optimal conditions, only 11% of the varieties that were in highest 35 
yield producing quartile under optimal N conditions remained in the highest quartile when grown under 36 
managed low N conditions, suggesting that specific breeding for low N tolerance can still produce gains, but that 37 
low N productivity is also not necessarily exclusive of high productivity in optimal conditions. 38 
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Maize is the most commonly cultivated cereal in Africa in terms of land area and production [1]. Low yields 42 
in this region are largely associated with drought stress, low soil fertility, weeds, pests, diseases, low input 43 
availability, low input use and inappropriate seeds [2]. After water, nitrogen (N) is the single most important 44 
input for maize production, and the lack of N is considered the principal constraint to cereal yields in areas with 45 
more than 400 mm average annual rainfall in sub-Saharan Africa [3]. Plants scientists face the challenge of solving 46 
these limitations while considering the additional implications of climate change on food security [4]. In that 47 
sense, affordable technologies capable of monitoring crop performance, involve yield prediction, or assessing 48 
phenotyping variability for agronomical or breeding purposes are aimed at surpassing the bottlenecks in the way 49 
of full exploitation of this technology [5,6]. One of the first non-destructive and analytical tools was the 50 
chlorophyll meter – based on radiation absorbance by leaves in the red and near-infrared regions (usually at 650 51 
and 940 nm). As relative leaf chlorophyll content readings have an indirect and close relationship with leaf N 52 
concentration and leaf chlorophyll concentration (SPAD) [7,8]. 53 

Remote sensing has become an important tool in the modernization of field High Throughput Plant 54 
Phenotyping (HTPP), including improvements in yield potential, adaptation to abiotic stressors (drought, 55 
extreme temperatures, salinity), biotic (susceptibility to pests and diseases) limiting conditions, and even quality 56 
traits [6,9,10]. The Normalized Difference Vegetation Index (NDVI) [11] is one of the most well-known vegetation 57 
indices derived from multispectral remote sensing, as it includes visible and near infrared radiation [12,13]. As a 58 
low-cost alternative, various RGB-based Vegetation Indices (RGB-VIs) can be calculated from commercial Reed 59 
Green Blue (RGB) cameras that have proven able to predict grain yield, quantify nutrient deficiencies, and 60 
measure disease impacts [14,15]. The RGB images can be processed using the Breedpix code that enables the 61 
extraction of RGB-VIs in relation to different properties of color, which often demonstrate performance similar to 62 
or slightly better than that of the better-known NDVI [16]. The RGB-VIs proposed here, namely Hue, Saturation, 63 
Intensity, Green Area (GA) and Greener Green Area (GGA) (the last two are based on pixel selections of Hue of 64 
60-180 and 80-180, respectively) and L, a*, and b* from the CIE-Lab color space, are readily obtainable from 65 
zenithal pictures of canopies and by using the appropriate calculations [16].  66 

The aim of this study is to evaluate the performance of different commercial and pre-commercial maize 67 
varieties under low nitrogen conditions using affordable HTPP tools. We evaluated the selection of maize 68 
varieties using a set of remote sensing indices derived from RGB images acquired from a UAV (Unmanned Aerial 69 
Vehicle) and at the ground level compared with the performance of the field-based NDVI and SPAD sensors, and 70 
then we tested their capacity for yield estimation both alone and in combination with standard agronomical 71 
variables, such as ASI (Anthesis Silking Data), AD (Anthesis Data), and Plant Height (PH). 72 

2. Materials and methods  73 

2.1. Plant material and growing conditions 74 

Field trials were conducted at the CIMMYT (International Center for Maize and Wheat Improvement) 75 
regional station located in Harare, Zimbabwe (-17.800 S, 31.050 E, 1498 m.a.s.l.). The soil of the station is 76 
characterized by a pH slightly below 6. This study consisted of two different conditions: the first was Optimum 77 
Nitrogen (OP) with a standard fertilization application [10] and was the Low Managed Nitrogen (LOW) that was 78 
25-35% less N fertilizer compared to the OP growing conditions. A set of 49 maize hybrids were developed at 79 
CIMMYT and 15 commercial maize varieties in Zimbabwe. Seeds were sown during the wet season, on December 80 
16th, 2015 and the harvested-on May 12th, 2016.  81 

2.2. Remote Sensing and proximal (ground) data colleciton 82 

Remote sensing evaluations were performed on seedlings (less than 5 leaves) during the last week of January. 83 
RGB-VIs were evaluated for each plot at terrestrial and aerial levels. RGB aerial images were acquired using an 84 
Unmanned Air Vehicle (UAV, Mikrokopter OktoXL, Moormerland, Germany) flying under remote control at 85 
about 50 m. The digital camera used for aerial imaging was a Lumix GX7 (Panasonic, Osaka, Japan). Images were 86 
taken at 16-megapixel resolution using a 4/3'' sensor, 20mm focal length, 1/160 second shutter speed, and auto-87 
programmed aperture. These images were taken at the rate of every 2 s from 50 m for the duration of the flight.At 88 
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the ground, level, one conventional digital photograph was taken per plot with an Olympus OM-D (Olympus, 89 
Tokyo, Japan), holding the camera about 80 cm above the plant canopy in a zenith and focusing near the center 90 
of each plot. The images were acquired with a resolution of 16 megapixels with a 4/3'' Live MOS sensor with a 91 
focal length of 14 mm, activated at a speed of 1/125 seconds with the aperture programmed in automatic mode.  92 

The NDVI of individual plots at ground level was determined with a ground-based portable 93 
spectroradiometer with an active sensor (GreenSeeker handheld crop sensor, Trimble, USA). The RGB images at 94 
aerial and ground level were taken on January 28th, 2016 with the NDVI. SPAD was measured in two different 95 
dates, once on February 18th, 2016 (SPAD1) and then again on March 1st, 2016 (SPAD2) using a portable Minolta 96 
SPAD-502 chlorophyll meter (Spectrum Technologies Inc., Plainfield, IL, USA). 97 

2.3. Image processing and statistical analyses 98 

For the RGB images, the Microsoft Image Composite Editor (ICE; Microsoft Research Computational 99 
Photography Group, Redmond, USA) was used to produce an accurate image mosaic as seen in Figure 1. A total 100 
of 63 overlapping images were used for mosaic. Through the open source image analysis platform FIJI (Fiji is Just 101 
ImageJ; http://fiji.sc/Fiji), regions of interest were established at each row for the plots to be cropped. RGB pictures 102 
were subsequently analyzed using a version of the Breedpix 0.2 software adapted to JAVA8 and integrated as the 103 
CIMMYT MaizeScanner plugin within FIJI (https://github.com/George-haddad/CIMMYT).  With the Breedpix 104 
software code, the images were processed to convert RGB values into indices based on the models of Hue-105 
Intensity-Saturation (HIS), CIE-Lab and CIE-Luv cylindrical-coordinate representations of colors. Additionally, 106 
Crop Senescence Index (CSI) was calculated in agreement with [15,17]. The Triangular Greenness Index (TGI) 107 
was calculated as the area of a triangle formed by the reflectance values of the Blue, Green and Red bands [18]. 108 
Finally, the Normalized Green Red Difference Index (NGRDI) is calculated as the difference between the green 109 
and red digital numbers differentiates between plants and soil, and the sum normalizes for variations in light 110 
intensity between different images [19]. All statistical analyses were done using R and R Studio (http://cran.r-111 
project.org, http://www.rstudio.com, R Studio, Boston, USA). 112 

3. Results and Discussion 113 

3.1. The effect of optimal condition and low managed nitrogen on grain yield 114 

 115 

Figure 1. LY (Low Yield), MLY (Medium Yow yield), MHY (Medium High Yield) and HY (High Yield) maize 116 
variety in two different conditions: (A) Optimum Nitrogen (OP) and (B) Low Nitrogen (LOW). Each value is the 117 
mean ± SD for each genotype (n= 48 per quartile with 16 different variety). Bars with the different letters are 118 
significantly at P<0.001. 119 

The results showed (Figure 1) that maize varieties grown under optimal conditions, 11% of the varieties that 120 
were in highest yield producing quartile under optimal N conditions remained in the highest quartile when 121 
grown under managed low N conditions, suggesting that specific breeding for low N tolerance can still produce 122 
gains, but that low N productivity is not necessarily exclusive of high productivity in optimal conditions. In some 123 
cases, it has been reported that the genotypes selected under low N fertilization input are not truly adapted to N-124 
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rich soils [20]. In [21] suggest that when the plant material performs relatively well under low N input, it should 125 
be selected under N deficiency conditions for which yield reduction does not exceed 35–40%. 126 

3.2. Performance of remote sensing indices and field sensors in estimating grain yield 127 

Table 1. Grain yield correlations with all proximal remote sensing variables from the RGB images taken from 128 
the UAV aerial platform, RGB images from the ground, and SPAD and NDVI field sensors. These indices are 129 
defined in the Introduction and Materials and Methods. Levels of significance: *, P < 0.05; ***, P<0.001. 130 

 131 
 132 
 133 
 134 
 135 
 136 
 137 
 138 
 139 
 140 
 141 
 142 
 143 
 144 
 145 
 146 

The RGB indices Hue, GGA and GA calculated from images taken at ground level demonstrated the best 147 
correlations with GY, outperforming other RGB indices (Table 1). GA quantifies the portion of green pixels to the 148 
total pixels of the image and is a reliable estimation of vegetation cover [22] and the values of GA in both 149 
observation levels were consistently below 60%. The ground and aerial measurements were taken at the same 150 
time on the same day, variation in environmental variables such as light intensity and brightness can be assumed 151 
to be negligible. On the other hand, all RGB indices from the ground and aerial levels didn’t show significant 152 
differences between quartiles. This may be best explained considering that the data for our study were collected 153 
at an early phenological stage when the plants were not yet at full canopy cover and they didn't yet show the full 154 
range of symptoms of N deficiency. N deficiency can reduce plant growth rates, but also other later factors that 155 
affect GY, including leaf chlorophyll content, soluble protein content, photosynthetic rate and related enzyme 156 
activities of the maize plant during grain filling [23]. 157 

NDVI has been used with satisfactory results in many prediction models of yield in wheat at the field level 158 
[24], using field, airborne and satellite imagery. Regarding NDVI, it’s the values clearly highlight and the 159 
variability is low, with more than 90% of values being in the range 0.55-0.8. These results support the previously 160 
reported saturation of reflectance spectra in the red and near-infrared regions, such that increasing leaf area does 161 
not involve a parallel increase in NDVI values [25] 162 

SPAD is used to measure relative chlorophyll content in plant leaves and it has been effectively used to 163 
diagnose N status and predict GY potential in maize [26]. In maize, chlorophyll meters provide a convenient and 164 
reliable way to estimate leaf N content during vegetative growth [27] and over a large time scale after anthesis 165 
[28]. We can see this as a decline in relative chlorophyll content between the two SPAD measurements.  This may 166 
be because when the crops are in the first phase (SPAD1), i.e., vegetative phase, young developing roots and 167 
leaves behave as sink organs for the assimilation of inorganic N and the synthesis of amino acids originating from 168 
the N taken up before flowering and then reduced via the nitrate assimilatory pathway .After flowering, (SPAD2), 169 
the N accumulated in the vegetative parts of the plant is remobilized and translocated to the grain [29].  170 

In multivariate analyses, the estimation for yield using different combinations of RGB images from the field 171 
and UAV platforms, field sensors and traditional agronomical field measurements provided improved results 172 
over the single index results presented in Table 1. Combining RGB images and proximal field sensors resulted in 173 

RGB indices/ 

aerial 
R P 

RGB indices/ 

ground 
R P 

Additional Field 

Sensors 
R P 

GGA 0.1978 *** GGA 0.2339 *** SPAD1 (18/02/16) 0.2936 *** 

GA 0.1659 *** GA 0.2175 *** SPAD2 (01/03/16) 0.2564 *** 

Hue 0.1449 *** Hue 0.2351 *** NDVI 0.1404 *** 

Intensity 0.0932 *** Intensity 0.0090     

Saturation 0.1819 *** Saturation 0.0515 *    

Lightness 0.0848 *** Lightness 0.0208 *    

a* 0.1275 *** a* 0.1467 ***    

b* 0.1573 *** b* 0.0080     

u* 0.1470 *** u* 0.2021 ***    

v* 0.0884 *** v* 0.0002     

CSI 0.1830 *** CSI 0.1031 ***    

TGI 0.0527 * TGI 0.0019     

NGRDI 0.1645 *** NGRDI 0.0007        
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R2 values of 0.403 and 0.384 for the ground and aerial RGB data, respectively. Further improvements were 174 
observed when using also employing the traditional agronomical field measurements ASI, AD and PH, resulting 175 
in R2 values of 0.6157 and 0.6154 using RGB ground and aerial VIs, respectively. This suggests that the use of the 176 
more time consuming field senors may be replaced with either ground or aerial RGB data when used in 177 
combination with the traditional agronomical field measurements for optimal results. 178 

4. Conclusions  179 

Maize hybrid technology may show promise for improving much-needed GY in low N environments and 180 
the current range of variability in performance suggests the possibility of potential for further improvements. We 181 
need to take advantage of known effects of low N on physiological processes to focus our efforts to bring HTPP 182 
to low N breeding. For HTPP, RGB sensors can be considered as functional technology from the ground or a 183 
UAV, but also, similar to SPAD, NDVI or any other agronomic or general plant physiological measurement, these 184 
measurements must be carefully planned for an adequate growth stage in order to optimize their benefits to plant 185 
breeding. Possible gains with new technologies with regards to equipment and time costs, especially in larger 186 
breeding platforms. 187 
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