Complementarities in development

Kirsten S. Wiebe

UNU-MERIT, Maastricht, The Netherlands Institute of Economic Structures Research, Osnabrück, Germany

November 1-30 2011

.⊒ . ►

Outline

1 Motivation

- Development progress in Sub-Saharan Africa
- Measures of development
- Dimensions of development
- Research question

2 Methodology

- Complementarity theory
- The model

3 Results

4 Conclusions

Motivation

Methodology Results Conclusions References Development progress in Sub-Saharan Africa Measures of development Dimensions of development Research question

Sub-Saharan Africa

http://devdata.worldbank.org/gmis/mdg/images/ssa2006.jpg

(日) (同) (三) (三)

Development progress in Sub-Saharan Africa Measures of development Dimensions of development Research question

Development progress in Sub-Saharan Africa

- Sub-Saharan African (SSA) countries are among the least developed in the world
- Development progress in SSA is very slow
- Millennium Development Goals (MDGs) will not be reached in 2015

< 67 ▶

Development progress in Sub-Saharan Africa Measures of development Dimensions of development Research question

Measures of development

- MDGs
 - set in 2000 by the UN General Assembly
 - 10 goals with sub-targets
 - poverty, health, education, environmental protection
- Human Development Index (HDI)
 - developed in 1990 by the UN Human Development Report Office
 - composite indicator of 3 aspects of development
 - per capita income,
- World Development Indicators

Development progress in Sub-Saharan Africa Measures of development Dimensions of development Research question

Dimensions of development Standard-of-living

- gdpc GDP per capita (HDI)
- hceh Household consumption expenditures per capita
- tpec Total primary energy consumption per capita (IEA¹)

Health

- *life* Life expectancy at birth (HDI)
- u5sr Under-5 mortality rate (MDG) \rightarrow under-5 survival rate

Education

litr Literacy rate (HDI)

pscr Primary school completion rate (MDG)

¹International Energy Agency

Development progress in Sub-Saharan Africa Measures of development Dimensions of development Research question

Research question

Why is there so little development progress in SSA?

Are the different dimensions of development mutually reinforcing or not compatible with each other?

< A >

Complementarity theory The model

Complementarity Theory

Two approaches in complementarity theory

- Conditional correlations
- Productivity analysis

Amir (2003), p.2:

"If in a maximization problem, the objective reflects a complementarity between an endogenous variable and an exogenous parameter, in the sense that **having more of one increases the marginal return to having more of the other**, then the optimal value of the former will be increasing in the latter. In the case of multiple endogenous variables, then all of them must also be complements so as to guarantee that their increases are mutually reinforcing."

< A >

Complementarity theory The model

Complementarity Theory

Lokshin *et al.* (2007): s_i and s_j are complements in $f(s_i, s_j)$ if and only if $\frac{\partial^2}{\partial s_i \partial s_i} = \alpha_{ij} \ge 0$

Miravete and Pernías (1998): estimate the interaction coefficient α_{ij} of s_i and s_j from the first order conditions

Complementarity theory The model

Development objective

$$d = \alpha_{10}s_{1t} + \alpha_{20}s_{2t} + \alpha_{30}s_{3t} + \frac{1}{2} \left[\alpha_{11}(s_{1t})^2 + \alpha_{22}(s_{2t})^2 + \alpha_{33}(s_{3t})^2 \right]$$
(1)
+ $\alpha_{12}s_{1t}s_{2t} + \alpha_{13}s_{1t}s_{3t} + \alpha_{23}s_{2t}s_{3t}$

- d Development measure
- s1 Logarithm of standard-of-living indicator
- s₂ Logarithm of health indicator
- s₃ Logarithm of education indicator

-

Methodology Results Conclusions References

Complementarity theory The model

First order conditions

$$s_{1t}^{\star} = -\frac{1}{\alpha_{11}} \left[\alpha_{10} + \alpha_{12} s_{2t}^{\star} + \alpha_{13} s_{3t}^{\star} \right] = a_{10} + a_{12} s_{2t}^{\star} + a_{13} s_{3t}^{\star}$$

$$s_{2t}^{\star} = -\frac{1}{\alpha_{22}} \left[\alpha_{20} + \alpha_{12} s_{1t}^{\star} + \alpha_{23} s_{3t}^{\star} \right] = a_{20} + a_{21} s_{1t}^{\star} + a_{23} s_{3t}^{\star} \qquad (2)$$

$$s_{3t}^{\star} = -\frac{1}{\alpha_{33}} \left[\alpha_{30} + \alpha_{13} s_{1t}^{\star} + \alpha_{23} s_{2t}^{\star} \right] = a_{30} + a_{31} s_{1t}^{\star} + a_{32} s_{2t}^{\star}$$

 s_{it}^{\star} Optimal level of development of s_i at time t

æ

(日) (同) (三) (三)

Complementarity theory The model

Partial adjustment model

As development in Sub-Saharan African countries is far from optimal, but taking first order conditions assumes optimality, it is necessary to extend the model with partial adjustment coefficients b_i for each dimension i of development

$$s_{it} - s_{it-1} = b_i \left(s_{it}^{\star} - s_{it-1} \right).$$
 (3)

Methodology Results Conclusions References

Complementarity theory The model

Final equation system

$$\Delta s_{1t} = a_{10}b_1 + \frac{a_{12}b_1}{b_2}\Delta s_{2t} + \frac{a_{13}b_1}{b_3}\Delta s_{3t} - b_1s_{1t-1} + a_{12}b_1s_{2t-1} + a_{13}b_1s_{3t-1} + k_1x_1$$

$$\Delta s_{2t} = a_{20}b_2 + \frac{a_{21}b_2}{b_1}\Delta s_{1t} + \frac{a_{23}b_2}{b_3}\Delta s_{3t} + a_{21}b_2s_{1t-1} - b_2s_{2t-1} + a_{23}b_2s_{3t-1} + k_2x_2 \quad (4)$$

$$\Delta s_{3t} = a_{30}b_3 + \frac{a_{31}b_3}{b_1}\Delta s_{1t} + \frac{a_{32}b_3}{b_2}\Delta s_{2t} + a_{31}b_3s_{1t-1} + a_{32}b_3s_{2t-1} - b_3s_{3t-1} + k_3x_3$$

 x_i Exogenous control variable for development dimension i

<ロ> <同> <同> < 回> < 回>

æ

Calculating results

Estimate equation system (4) with 2SLS Model I gdpc, u5sr, pscr Model II hceh, u5sr, pscr Model III tpec, u5sr, pscr Models a/b differ w.r.t. exogenous control variables

- 2 Calculate a_{ij} 's and b_i 's from estimated coefficients
- 3 Check if coefficients fulfill restrictions

$$a_{ij} * a_{ji} \ge 0$$

$$a_{12}a_{23}a_{31} = a_{13}a_{32}a_{21}$$

$$0 < b_i < 1$$

Table: Complementarity and partial adjustment coefficients gdpc

	aij	$= -I_{ij}$	/ I _{ii}	a _{ij} =	$= -c_{ij}I_{j}$	j / I _{ii}	$a_{ij} = -I_{ij}/I_{ii}$				$a_{ij} = -c_{ij}I_{jj}/I_{ii}$			
	Model la						Model Ib	Aodel Íb						_
	Coef.	SE	t-stat	Coef.	SE	t-stat	Coef.	SE	t-stat		Coef.	SE	t-stat	
a ₁₂	21.805	18.681	1.167	19.632	41.511	0.473	-90.348	295.319	-0.306		-99.225	275.596	-0.360	
a ₂₁	0.042	0.025	1.653 '	0.038	0.044	0.864	-0.006	0.023	-0.244		-0.005	0.015	-0.354	
a ₁₃	-3.080	1.883	-1.636 '	-3.240	1.965	-1.649	8.150	26.954	0.302		7.487	27.301	0.274	
a ₃₁	-0.301	0.214	-1.404 '	-0.272	0.329	-0.827	0.061	0.249	0.243		0.059	0.165	0.358	
a ₂₃	0.128	0.088	1.446 '	0.131	0.109	1.206	0.080	0.061	1.326	,	0.075	0.079	0.952	
a32	6.990	4.241	1.648 '	6.854	7.295	0.940	11.144	3.344	3.332	***	10.762	6.042	1.781	*
b_1	-0.107	0.098	-1.102				-0.043	0.071	-0.607					
b ₂	0.251	0.128	1.967 *				0.140	0.041	3.408	***				
b3	0.345	0.113	3.054 ***				0.390	0.138	2.834	***				
a ₁₂ a ₂₃ a ₃₁	-0.840			-0.700			-0.441				-0.439			
a ₁₃ a ₃₂ a ₂₁	-0.904			-0.844			-0.545				-0.403			

Signif. codes: *** 0.01, ** 0.05, * 0.10, ' 0.20, 1.00

æ

《口》《聞》《臣》《臣》

Table: Complementarity and partial adjustment coefficients hceh

	aij	$= -I_{ij}/I$	ii	a _{ij}	= -c _{ij} I _{jj} /	'I _{ii}	a _{ij}	$= -I_{ij}/$	l _{ii}	$a_{ij} = -c_{ij}I_{jj}/I_{ii}$		
	Model I	la					Model I	lb				
	Coef.	SE	t-stat	Coef.	SE	t-stat	Coef.	SE	t-stat	Coef.	SE	t-stat
a ₁₂	376.958	7616.144	0.049	379.991	7929.621	0.048	-26.400	114.999	-0.230	-28.354	110.781 -	0.256
a ₂₁	0.002	0.065	0.035	0.003	0.056	0.046	-0.015	0.063	-0.235	-0.028	0.096 -	0.295
a ₁₃	-55.691	1137.833	-0.049	-54.915	1140.985	-0.048	5.464	19.682	0.278	5.856	21.844	0.268
a ₃₁	-0.018	0.338	-0.052	-0.019	0.471	-0.041	0.056	0.276	0.204	0.121	0.432	0.280
a23	0.144	0.647	0.223	0.143	0.618	0.232	0.163	0.186	0.875	0.185	0.224	0.825
a32	6.766	6.042	1.120	6.983	32.466	0.215	4.929	4.057	1.215	4.680	6.360	0.736
b_1	-0.005	0.097	-0.048				0.050	0.152	0.329			
b ₂	0.078	0.151	0.515				0.066	0.063	1.045			
b ₃	0.261	0.676	0.386				0.292	0.166	1.756 *			
a ₁₂ a ₂₃ a ₃₁	-0.977			-1.032			-0.241			-0.635		
a ₁₃ a ₃₂ a ₂₁	-0.754			-1.150			-0.404			-0.767		
Signif. cod	Signif. codes: *** 0.01, ** 0.05, * 0.10, ' 0.20, 1.00											

<ロト < 同ト < 三ト

- ∢ ≣ ▶

э

Table: Complementarity and partial adjustment coefficients tpec

	$a_{ij} = -I_{ij}/I_{ii}$				$= -c_{ij}I_j$	j / 1 _{ii}	a _{ij} :	$= -I_{ij}$	'I _{ii}		$a_{ij} = -c_{ij}I_{jj}/I_{ii}$			_
	Model IIIa			Model IIIb										_
	Coef.	SE	t-stat	Coef.	SE	t-stat	Coef.	SE	t-stat		Coef.	SE	t-stat	
a ₁₂	86.548	228.728	0.378	54.907	83.563	0.657	-36.569	70.132	-0.521		-39.267	62.695	-0.626	
a ₂₁	0.017	0.009	1.878 *	0.001	0.010	0.139	-0.014	0.027	-0.532		-0.012	0.019	-0.621	
a ₁₃	-3.398	14.751	-0.230	-1.764	27.541	-0.064	3.507	8.144	0.431		2.665	8.177	0.326	
a31	-0.146	0.123	-1.182	-0.004	0.052	-0.067	0.084	0.233	0.359		0.052	0.174	0.298	
a23	0.076	0.068	1.110	0.079	0.090	0.878	0.077	0.082	0.937		0.060	0.104	0.582	
a32	7.972	5.853	1.362 '	8.250	6.229	1.324	9.325	3.331	2.800	***	8.276	5.239	1.580	'
<i>b</i> ₁	0.025	0.160	0.158				-0.069	0.051	-1.356	,				
b ₂	0.181	0.039	4.572 ***				0.127	0.042	3.043	***				
b3	0.390	0.111	3.511 ***				0.386	0.122	3.152	***				
a ₁₂ a ₂₃ a ₃₁	-0.960			-0.017			-0.237				-0.123			
a ₁₃ a ₃₂ a ₂₁	-0.461			-0.015			-0.458				-0.265			
Signif. cod	les: **	* 0.01, *	* 0.05, * 0).10, '0	.20, 1	.00								_

э

- significant coefficient, ... insignificant coefficient

- 4 同 6 4 日 6 4 日 6

э

Model validity

restrictions on coefficients are fulfilled

- except *b*₁ < 0
- possible explanation: reflecting decreasing production and income in many Sub-Saharan African countries during the 1990s
- significant positive coefficients a₂₃ and a₃₂
- \Rightarrow Complementary relation between health and education
 - sign of *a*₁₂, *a*₂₁ and *a*₁₃, *a*₃₁ depending on included exogenous variables
- $\Rightarrow\,$ Relation of standard-of-living indicators with health and education unclear

.

Policy conclusion

Good health and education outcomes, measured by the number of children surviving to the age of five (out of one thousand life births) and the primary school completion rate, respectively, are mutually reinforcing. A clear relation of these with living standards, measured with three different indicators, however is not apparent. Development policies that aim at increasing both health and education outcomes at the same time will have a higher effect on a country's overall development than policies aiming at either one individually.

Bibliography

- 1. Amir, R. Supermodularity and complementarity in economics: An elementary survey. CORE, Catholic University of Leuven, 2003.
- Lokshin, B.; Carree, M.; Belderbos, R. Testing for complementarity and subsitutability in case of multiple practices. *MSI 0708, Katolieke Universiteit Leuven* 2007.
- Miravete, E.; Pernías, J. Innovation Complementarity and the scale of production. NY University, Department of Economics, RR#98-42 1998.

- 同 ト - ヨ ト - - ヨ ト