Click reactions in the synthesis of tripodal $\mathbf{1 H}-1,2,3$-triazol derivatives of $\mathbf{1 , 3 , 5}$-triazinane-2,4,6-trione

Julio A. Seijas,* Marta Carracedo-Taboada, Xesús Feás, M. Pilar Vázquez-Tato*
Department of Organic Chemistry. Facultade de Ciencias. Universidade de Santiago de Compostela. Campus Lugo. Aptdo. 280. 27080-Lugo (Spain).

Abstract: The copper catalyzed Huisgen's reaction was used for the synthesis of two derivatives of 1 H -1,2,3-triazol-1,3,5-triazinane-2,4,6-trione. One from tris(2-azidoethyl)-1,3,5-triazinane-2,4,6-trione and phenylacetylene, and the other by coupling of 1,3,5-tri(prop-2-yn-1-yl)-1,3,5-triazinane-2,4,6-trione with benzyl azide.

Copper catalyzed Huisgen's reaction is a widespread tool in click chemistry. ${ }^{1}$ However there are few examples about its use in the building of molecules based in a isocyanuric acid core with C_{3} symmetry. ${ }^{2 ; 3}$
In order to establish the achievability and conditions of this reaction to prepare this sort of compounds, we studied the reaction with a commercial azide (benzylazide, $\mathbf{1}$) and the alkyne $2,{ }^{4}$ synthesized from cyanuric acid 3 .
Then, to obtain triazole 3 (Scheme 1), alkyne, benzylazide, copper(II) sulfate and sodium ascorbate, in 1:3,5:0,5:1 proportions, were mixed in DMF/water. The reaction was left at room temperature for 24 h . Once no starting alkyne was detected by TLC, water and ethyl acetate were added, appearing a solid. This was isolated by filtration (60% yield) and the ${ }^{1} \mathrm{H}$ NMR spectrum confirmed the structure of 3 . It showed a singlet at $\delta 7.50 \mathrm{ppm}$ corresponding to the triazole ring hydrogen, aromatic hydrogens ($\delta 7.27$ to 7.18 ppm) and two singlets assigned to the two CH_{2} groups ($\delta 5.39$ and 5.05 ppm). In addition the mass spectrum shows a peak at $\mathrm{m} / \mathrm{z} 665$ corresponding to the molecular ion plus sodium.

Scheme 1.

To see the scope of the reaction, the same method was used to synthesize the triazole 6 (Scheme 2), using as reagents the azide 4^{5} and phenylacetylene. The reaction was carried out under the conditions described above and analyzed by TLC (after 24 h starting azide disappeared). From the reaction mixture a solid was separated by filtration and it was identified as 6 (67% yield).

Scheme 2.

The spectroscopic data were consistent with this structure. The mass spectrum showed the molecular ion plus sodium at $\mathrm{m} / \mathrm{z} 665$. The ${ }^{1} \mathrm{H}$ NMR spectrum displayed a singlet at $\delta 8.46 \mathrm{ppm}$ of hydrogen in the triazole ring, aromatic hydrogens signals ($\delta 7.81$ to 7.29 ppm) and two triplets at $\delta 4.53$ and 4.17.
Both tripodal compounds were minimized with MOPAC 2009^{7} using Hamiltonian PM6, the resulting structures indicate that triazole $\mathbf{6}$ is more planar than $\mathbf{3}$, due to the conjugation of triazole and benzene rings (Figure 1).

Figure 1.

In summary, the feasibility of the synthesis of tripodal $1 \mathrm{H}-1,2,3$-triazol derivatives of 1,3,5-triazinane-2,4,6-trione by Huigen's reaction was demonstrated. These compounds would have potential suitability as stabilizing ligands for metals in catalysis. ${ }^{6}$

Acknowledgements

Xunta de Galicia for financial support: INCITE09 262346PR. X. F. thanks the Isidro Parga Pondal Program (Xunta de Galicia, Spain).

General procedure

Synthesis of tris[(1-benzyl-1H-1,2,3-triazole-4-yl)methyl]-1,3,5-triazinane-2,4,6-trione (3). Alkyne 2 (300 $\mathrm{mg}, 1.23 \mathrm{mmol}$), benzylazide ($575 \mathrm{mg}, 4.32 \mathrm{mmol}$) and sodium ascorbate ($245 \mathrm{mg}, 1.23 \mathrm{mmol}$) were dissolved in DMF (4 mL). Dropwise was added a solution of copper(II) sulfate ($154 \mathrm{mg}, 0.615 \mathrm{mmol}$) in water (2 mL), and left 24 hours at room temperature in an inert atmosphere. DMF was evaporated and water $(100 \mathrm{~mL})$ and ethyl acetate $(100 \mathrm{~mL})$ were added, a solid appeared and it was filtered. The solid was washed with ethyl acetate and dried under vacuum. This gives the triazole $3(475 \mathrm{mg}, 60 \%)$ as a pale green solid. M.p. $183-184^{\circ} \mathrm{C} . \mathrm{RMN}^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}), 7.26(\mathrm{br} \mathrm{s}, 9 \mathrm{H}, \mathrm{ArH})$, $7.19\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{ArH}, \mathrm{J}_{\text {ortho }}=7.5 \mathrm{~Hz}\right), 5.39\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCO}\right) . \mathrm{RMN}{ }^{13} \mathrm{C}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 148.6(\mathrm{C}=\mathrm{O}), 142.6(\mathrm{C}-\mathrm{N}=\mathrm{N}), 134.7$ (quaternary Ph$), 129.3,129.0,128.4(\mathrm{CH}, \mathrm{Ph}), 123.6(\mathrm{CH}-$ $\mathrm{N}), 54.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 38.2\left(\mathrm{CH}_{2} \mathrm{NCO}\right)$. IR (goldengate, $\left.\mathrm{cm}^{-1}\right): 1690(\mathrm{C}=\mathrm{O}), 1452,1423,1229,1076,764$, 756, 696. MS (ES) m/z (\%): 665 (${ }^{+}+\mathrm{Na}, 84$), 235 (48), 131 (93), 101 (57), 77 (100).

References

1. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products; A. Padwa, W. H. Pearson eds.; John Wiley \& Sons, 2002.
2. Liu, Y.; Díaz, D. D.; Accurso, A. A.; Sharpless, K. B.; Fokin, V. V.; Finn , M. G. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 5182-5189.
3. Sugai, N.; Heguri, H.; Ohta, K.; Meng, Q.; Yamamoto, T.; Tezuka . Y. J. Am. Chem. Soc. 2010, 132, 14790-14802.
4. Grigoryan, S. G.; Avetisyan, K. G.; Arzumanyan, A. M.; Mardoyan, M. K.; Matnishyan, A. A. Khimicheskaya Promyshlennost, Seriya: Reaktivy i Osobo Chistye Veshchestva 1981, 3, 34-5. Chem. Abstr. Scifinder AN1982:68948 CAN 96:68948.
5. Hettche, F.; Hoffmann, R. W. New J. Chem. 2003, 27, 172-177.
6. Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2004, 6, 2853-2855.
7. Stewart, J. J. P. Stewart Computational Chemistry, Version 11.052W, web: HTTP://OpenMOPAC.net
