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Abstract. Vitamin E, consisting of the groups of tocotrienols and tocopherols, is the
biologically most important fat-soluble antioxidant. In the context of total synthesis of these
compounds, the Zr-mediated carbometalation methodology was applied. (E)-Geranylacetone
was converted into the corresponding terminal alkyne which furnished the (all-E)-alkenyl
iodide by carboalumination/ iodonolysis. Treatment with butyl lithium delivered the (all-E)-
vinyl lithium compound for the coupling with (enantiomerically pure) benzyl O-protected
chroman acetaldehydes. Reductive deoxygenation of the protected 2’-hydroxy-tocotrienols
yielded various stereochemically defined homologous trienols.
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Introduction

Tocotrienols 5 and tocopherols 6 are members of the group of vitamin E compounds, which
represent the most important lipid-soluble antioxidant in nature.[1] During our activities in this
field, we have developed a variety of routes towards naturally occurring tocopherols, mostly
containing metal-catalyzed transformations as the key steps. An overview is sketched in
Scheme 1[2]. An extraordinary approach to tocopherols 6 was  found  by  application  of  the
highly stereoselective Ir-catalyzed asymmetric hydrogenation, starting from derivatives of
(all-E)-tocotrienols 5.[3] In this regard, the access to tocotrienols is of increasing importance.
Isolation of pure tocotrienols from natural sources is troublesome, and only a few synthetic
routes have been developed to date[2b].
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Scheme 1. Overview on known routes to tocopherols (6) and stereoselective
total synthesis of tocotrienols (5) described in this work.

We therefore envisioned the pathway shown in Scheme 1. Starting from easily available (E)-
geranylacetone (4), alkyne 3 should be used as the starting material for the zirconium-
catalyzed carboalumination methodology[4], thus delivering the stereodefined trienyl building
block 2 for coupling with chroman compounds of type 1.

Results

The conversion of methyl ketone 4 into the terminal acetylene 3 was achieved by the two-
step, but one-pot procedure via the diethyl enolphosphate[5] (Scheme 2) in 45% isolated yield.
For such transformations in polyprenoid chemistry, more suitable alternative methods are still
not available. Best results for the carboalumination-iodonolysis sequence (3 2) were
obtained by treatment of alkyne 3 with 2 mol equiv. trimethylaluminum in presence of 1 mol
equiv. ZrCl2Cp2 (0°C to  room temp.).  After  addition  of  iodine  and  work-up,  (all-E)-alkenyl
iodide 2 was isolated in 75%.
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Scheme 2. Transformation of (E)-geranylacetone (4) to (all-E)-alkenyl
iodide 2 by Zr-catalyzed carboalumination and iodonolysis.

For the coupling step with the chroman unit, iodine-lithium exchange with n-BuLi (-70°C,
Et2O) delivered the vinyl-lithium compound which was reacted with the benzyl protected
enantiomerically pure chroman acetaldehyde 1a. Alcohol 7 was obtained in up to 95%
isolated yield as a 3:1 epimeric mixture.
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Scheme 3. Final steps of tocotrienol synthesis by coupling
and reductive deoxygenation/ deprotection.



Deoxygenation and concomitant benzyl ether cleavage were achieved by esterification of the
2’-hydroxy function with 4-chlorobenzoyl chloride and subsequent reduction with 10 mol
equiv. Li in NH3/THF (-35°C), thus yielding (R,E,E)- -tocotrienol (5a). Spectroscopic data of
5a and its acetate derivative were identical with the values published, and the optical purity
(generally >99.5%) was analyzed by chiral-phase HPLC. By applying the same methodology,
various other stereochemically defined tocotrienols, i.e. enantiomers and homologous [e.g. by
using (all-E)-farnesylacetone (C18) instead of (E)-geranylacetone (C13)], were prepared.

Conclusions

The Zr-catalyzed carbometalation methodology was applied successfully to the preparation of
various isomeric and homologous tocotrienols and their derivatives. While this sequence is
not applicable to large-scale synthesis due to the high amounts of reagents necessary, it serves
as a reliable laboratory method for the preparation of stereochemically defined tocotrienols in
gram amounts for analytical, synthetic, and biological studies.
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