Entropy, Dissipation and Lagrangian Hydrodynamics

Massimo Materassi
Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche ISC-CNR, Sezione Territoriale di Sesto Fiorentino, Sesto Fiorentino (Florence, Italy)
massimo.materassi@isc.cnr.it
PLAN OF THE TALK 1/2

• **Background**: from differential equations to algebræ of observables for Hamiltonian (conservative) systems via symplectic brackets. **Problem**: friction breaks the symplectic framework;

• **Algebrizing friction via the metriplectic formalism**: complete systems, Hamiltonian, entropy and metriplectic algebræ;

• **Lagrangian formalism in fluids and parcel variables**: from the 6N particle variables to the 6 parcel centre-of-mass variables, plus entropy of the relative variables;

• **Ideal fluids**: equations of motion, Lagrangian and Hamiltonian formulations;

• **Mechanism of dissipation**: friction between two nearby parcels and heat conduction. Equations of motion of non-ideal fluids;
PLAN OF THE TALK 2/2

• **Non-ideal fluids:** the metriplectic formulation;

• Conclusions.
PLAN OF THE TALK 1/2

- **Background**: from differential equations to algebræ of observables for Hamiltonian (conservative) systems via symplectic brackets.

Problem: friction breaks the symplectic framework;
Algebrizing dynamical systems: defining a suitable product, turning the set of observables into a closed algebra O that prescribes the whole dynamics.

Extended definition of (non-canonical) Hamiltonian dynamics for a general dynamical system:

$$\dot{\psi} = F(\psi) \quad / \quad \psi \in \mathbb{V}$$

- there exists a **conserved total energy** (candidate Hamiltonian H):

 $$\exists \quad H(\psi) \quad / \quad [H] = m\ell^2 t^{-2}, \quad \dot{H} \triangleq 0$$

- there exists a **good Poisson bracket** (antisymmetric 2-form on the manifold of the motions satisfying Jocobi’s identity), so that the motion is generated by it as:

 $$\dot{f} \triangleq \partial_t f + \{f, H\} \quad \forall \quad f = f(\psi)$$
Gifts of algebrization:

Identification of symmetries with conservation laws

Straightforward implementation of continuous groups

Exact constraints for numerical schemes: Casimir quantity method

Orbit diagnosis without solving the equations!

Credits: “La Donna di Cuori” © by Milo Manara, freely edited by MM
WHAT ABOUT FRICTION?

Friction has to do with:

- **Stopping** (i.e., asymptotic stability);

- **Warming up** (i.e., heat production/transfer, i.e. irreversibility-entropy);

- **Mechanical energy dissipation** (i.e., breakup of the Hamiltonian framework);

- **Thermodynamics** arising naturally from mechanics (i.e., microscopic degrees of freedom treated statistically)

Credits: http://www.ricerchefrequenti.it/come-fare-una-sgommata/
Friction breaks down the Hamiltonian framework for various reasons:

- Friction drives systems to asymptotic equilibria, shrinking the phase space volume...

...while Hamiltonian systems conserve phase space volumes;

- Mechanical energy is worn out by friction, so what may play the role of Hamiltonian?
PLAN OF THE TALK 1/2

- Background: from differential equations to algebræ of observables for Hamiltonian (conservative) systems via symplectic brackets. Problem: friction breaks the symplectic framework;

- Algebrizing friction via the metriplectic formalism: complete systems, Hamiltonian, entropy and metriplectic algebræ;
Dissipation involves the environment, hence rendering the primitive algebra O unable to predict the whole dynamics. O remains incomplete.
Need of **completing the dissipative system**, in order to algebrize it:

- **including “the environment”;**
- **re-defining a suitably generalized product \(\langle\langle f, g\rangle\rangle; \)**
- **defining a new quantity \(F \) generating the dissipative motion**

\[
\langle\langle A_i'', A_j'' \rangle \rangle = \phi_{ij}'' (A_1'', \ldots, A_N'') \quad \forall \quad A_i'', A_j'' \in \mathcal{O}''
\]

Completing the system means closing it including the interacting environment: **need of environmental observables**
Environmental observables must have statistical nature: friction is a heat exchange with the environment, hence statistics of the variables describing the latter arise naturally.

“Environmental quantities” completing the system will describe microscopic statistically treated degrees of freedom (μSTDOF): a complete system will be described as \((\psi_{\text{macro}}, P(\psi_{\text{micro}}))\)
The closed algebra \((O'', \langle\langle*, *\rangle\rangle) \) includes the space-time transformation generators (energy \(H \), momenta, boost generators) and the entropy of the \(\mu \)STDOF.

Prigogine’s approach: the entropy is a form of Lyapunov function, related to the dissipative component of dynamics.

Metric systems are intrinsically irreversible, very easily algebraized and show asymptotic equilibria and Lyapunov observables:

\[
\dot{\psi}_h = \Gamma_{hk}(\psi) \frac{\partial K(\psi)}{\partial \psi_k} \quad / \quad \det \|\Gamma_{hk}(\psi)\| \geq 0, \quad \Gamma_{hk} = \Gamma_{kh}
\]
K is a Lyapunov, monotonic in time along the motion, hence the system is irreversible (and asymptotically in equilibrium wherever *K* is stationary):

\[
\dot{K}(\psi) = \frac{\partial K(\psi)}{\partial \psi_h} \cdot \psi_h = \frac{\partial K(\psi)}{\partial \psi_h} \Gamma_{hk}(\psi) \frac{\partial K(\psi)}{\partial \psi_k} \geq 0 \quad \forall \quad \psi
\]

A symmetric (positive-)semidefinite 2-form \((f,g)\) may be defined producing the motion for the metric dynamics:

\[
(f,g) = \Gamma_{hk} \frac{\partial f}{\partial \psi_h} \frac{\partial g}{\partial \psi_k}, \quad \dot{f} = \partial_t f + (f, K)
\]

Hamiltonian systems plus friction: the algebrization of the dissipative component will make use of a metric algebra, with \(K = S\). The Hamiltonian component will still be symplectic.

The metric component will be the one prevailing near a local asymptotic equilibrium (overdamped limit).
How should a metric and a symplectic structure co-exist?

• The total energy generates symplectically the non-dissipative limit of the system, and in that purely Hamiltonian limit the total entropy should remain constant:

\[\{S, H\} = 0 \]

• The total entropy is the Lyapunov function generating metrically the dissipative part of the system, that does not alter the total energy:

\[(S, H) = 0\]

• The total entropy increases due to the dissipative part of the system:

\[\alpha(S, S) \geq 0 \]

These requirements are met by the metriplectic formalism (MF), that puts together the Hamiltonian-conservative-symplectic and the entropic-dissipative-metric parts of the motion.
Metriplectic algebra: the gradients of observables are composed to give other observables by a bi-linear algebra which is partially symplectic and partially metric

\[\langle \langle f, g \rangle \rangle = \{ f, g \} + (f, g) \quad \forall \quad f = f(\psi), \quad g = g(\psi) \]

Metriplectic motion via free energy: a linear combination \(F \) (free energy) of \(H \) and \(S \) is constructed

\[F = H + \alpha S \]

and the dynamics is prescribed to be **metriplectically generated by** \(F \):

\[\dot{f} = \partial_i f + \langle \langle f, F \rangle \rangle \quad \forall \quad f = f(\psi), \]

\[\dot{\psi}(\psi_0) = 0 \quad \iff \quad \frac{\partial F(\psi_0)}{\partial \psi_i} = 0 \]
\[\dot{f} = \partial_t f + \langle \langle f, F \rangle \rangle \]

Habemus Algebream...

Credits: “Druuna” © in Rome, by Serpieri, freely edited by MM
S of the μSTDOF changes **only due to the dissipation terms**. In order for S to have naturally zero Poisson bracket with H, it is expected to be a function of the Casimir quantities:

$$\{C_\alpha, f\} = 0 \quad \forall \quad f = f(\psi), \quad S = S(C_1, \ldots, C_n) \quad \Rightarrow \quad \{S, H\} = 0$$

Metric bracket: a symmetric, semi-definite 2-form on the gradients of the observables, which has H as a “null mode”:

$$\Gamma_{ij} \frac{\partial H}{\partial \psi_i} \frac{\partial f}{\partial \psi_j} = 0 \quad \forall \quad f = f(\psi) \quad \Rightarrow \quad (S, H) = 0$$

Since S is a Casimir and H has zero metric bracket with anything, one has:

$$\dot{f} = \partial_i f + \{f, H\} + \alpha (f, S) \quad \forall \quad f = f(\psi)$$
PLAN OF THE TALK 1/2

• Background: from differential equations to algebræ of observables for Hamiltonian (conservative) systems via symplectic brackets. Problem: friction breaks the symplectic framework;

• Algebrizing friction via the metriplectic formalism: complete systems, Hamiltonian, entropy and metriplectic algebræ;

• Lagrangian formalism in fluids and parcel variables: from the 6N particle variables to the 6 parcel centre-of-mass variables, plus entropy of the relative variables;
The fluid system is represented as a continuum domain evolving with time. It is subdivided into infinitely many infinitesimal parcels, initially spanned by a continuous 3D index \vec{a}. As the continuum evolves, the parcel positions are $\vec{\zeta}(\vec{a}, t)$.

\[\vec{\zeta}(\vec{a}, 0) = \vec{a}, \]
\[J(\vec{a}, t) = \frac{\partial \vec{\zeta}(\vec{a}, t)}{\partial \vec{a}}, \]
\[\mathcal{J}(\vec{a}, t) = \det J(\vec{a}, t) \]
\[d^3\zeta(\vec{a}, t) = \mathcal{J}(\vec{a}, t) d^3a \]
\[\rho(\vec{a}, t) = \frac{\rho_0(\vec{a}, t)}{\mathcal{J}(\vec{a}, t)}. \]
• Each parcel is formed by $N(\vec{a})$ particles, the thermodynamics of which will complete the physics of the parcel crucially.

• The position and momentum of the parcel $\vec{\zeta}$ and $\vec{\pi}$ are the centre-of-mass variables of those $N(\vec{a})$ particles.

$$\vec{\zeta}(\vec{a}, t) = \frac{1}{N(\vec{a})} \sum_{I=1}^{N(\vec{a})} \vec{r}_I(t),$$

$$\vec{\pi}(\vec{a}, t) = \frac{1}{d^3a} \sum_{I=1}^{N(\vec{a})} \vec{p}_I(t) = \rho_0(\vec{a}) \partial_t \vec{\zeta}(\vec{a}, t)$$

• The equilibrium thermodynamics of the particles forming the parcel completes the physical description through the use of the mass-specific entropy density attributed to the parcel:

$$s(\vec{a}, t), \quad U\left(\frac{\rho_0}{\mathcal{F}}, s\right),$$

$$p = -\rho_0 \frac{\partial U}{\partial \mathcal{F}}, \quad T = \frac{\partial U}{\partial s}$$
PLAN OF THE TALK 1/2

• Background: from differential equations to algebræ of observables for Hamiltonian (conservative) systems via symplectic brackets.

Problem: friction breaks the symplectic framework;

• Algebrizing friction via the metriplectic formalism: complete systems, Hamiltonian, entropy and metriplectic algebræ;

• Lagrangian formalism in fluids and parcel variables: from the 6N particle variables to the 6 parcel centre-of-mass variables, plus entropy of the relative variables;

• Ideal fluids: equations of motion, Lagrangian and Hamiltonian formulations;
• In the absence of friction and thermal conductivity the parcel is expected to satisfy a mechanical action principle, that requires the survey of all forms of parcel energy to be written:

\[dE_{\text{kin}} = \frac{\rho_0}{2} \dot{\zeta}^2 d^3 a, \quad dV = \rho_0 \phi \left(\hat{\zeta} \right) d^3 a, \quad dE_{\text{therm}} = \rho_0 U \left(\frac{\rho_0}{f}, s \right) d^3 a, \]

\[
A \left[\zeta, \dot{\zeta}, s \right] = \int_{t_i}^{t_f} dt \int_{D_0} d^3 a \left[\frac{\rho_0}{2} \dot{\zeta}^2 - \rho_0 \phi \left(\hat{\zeta} \right) - \rho_0 U \left(\frac{\rho_0}{f}, s \right) \right]
\]

• Euler-Lagrange equations for the Lagrangian degrees of freedom of the fluid read:

\[
\ddot{\zeta}_\alpha = - \frac{\partial \phi \left(\hat{\zeta} \right)}{\partial \zeta_\alpha} - \partial_i \left(p A_\alpha^i \left(\partial \hat{\zeta} \right) \right), \quad A_\alpha^i = \frac{\epsilon_{\alpha \kappa \lambda}}{2} \epsilon_{imn} \partial_m \zeta^K \partial_n \zeta^\lambda,
\]

\[
\ddot{s} = \dot{s} = 0
\]
• Out of the **Lagrangian density** one can write the **Hamiltonian density** via Legendre transform:

\[
\mathcal{L} (\zeta, \dot{\zeta}, s) = \frac{\rho_0}{2} \dot{\zeta}^2 - \rho_0 \phi \left(\bar{\zeta} \right) - \rho_0 \mathcal{U} \left(\frac{\rho_0}{\mathcal{F}}, s \right),
\]

\[
\mathcal{H} (\zeta, \pi, s) = \frac{\pi^2}{2 \rho_0} + \rho_0 \phi \left(\bar{\zeta} \right) + \rho_0 \mathcal{U} \left(\frac{\rho_0}{\mathcal{F}}, s \right)
\]

• **Hamiltonian’s equations of motion** for the position and momentum of the parcel are straightforwardly obtained:

\[
\dot{\zeta}^\alpha = \frac{\pi^\alpha}{\rho_0}, \quad \dot{\pi}_\alpha = - \frac{\partial \varphi \left(\bar{\zeta} \right)}{\partial \zeta^\alpha} - A_\alpha^i \partial_i p
\]

• The evolution (conservation) of the **parcel’s entropy** may be found naturally passing to the algebrization of the ideal fluid...
An “apparently canonical” Poisson bracket is defined for the ideal fluid in the Lagrangian formalism:

\[\{ F, G \} = \int_{D_0} d^3 a \left[\frac{\delta F}{\delta \zeta^\alpha (\vec{a})} \frac{\delta G}{\delta \pi^\alpha (\vec{a})} - \frac{\delta G}{\delta \zeta^\alpha (\vec{a})} \frac{\delta F}{\delta \pi^\alpha (\vec{a})} \right] \]

The equations of motion are obtained now through this symplectic algebra:

\[H [\zeta, \pi, s] = \int_{D_0} \mathcal{H} (\zeta, \pi, s) d^3 a, \quad \dot{\zeta}^\alpha = \{ \zeta^\alpha, H \}, \quad \dot{\pi}_\beta = \{ \pi_\beta, H \}, \quad \dot{s} = \{ s, H \} = 0 \]

Ideal fluids’ parcel entropy is conserved: this may emerge as a consequence of the absence of derivatives with respect to \(s \) in the definition of Poisson bracket. This fact also renders the entropy a Casimir invariant:

\[S [s] = \int_{D_0} \rho_0 (\vec{a}) s (\vec{a}, t) d^3 a, \]

\[\{ S, G \} = 0 \quad \forall \quad G \]
PLAN OF THE TALK 1/2

• Background: from differential equations to algebræ of observables for Hamiltonian (conservative) systems via symplectic brackets. Problem: friction breaks the symplectic framework;

• Algebrizing friction via the metriplectic formalism: complete systems, Hamiltonian, entropy and metriplectic algebræ;

• Lagrangian formalism in fluids and parcel variables: from the 6N particle variables to the 6 parcel centre-of-mass variables, plus entropy of the relative variables;

• Ideal fluids: equations of motion, Lagrangian and Hamiltonian formulations;

• Mechanism of dissipation: friction between two nearby parcels and heat conduction. Equations of motion of non-ideal fluids;
• Being to collisions from relative motions, friction between two nearby parcels depends on their velocity difference (gradient). Heat conduction instead depends (linearly) on the temperature difference.

• In the Lagrangian formalism these dissipation terms enter the equations via addenda calculated thanks to the diffeomorphic nature of the continuum motion.

\[
\partial_t \zeta (\tilde{a}, t) + J (\tilde{a}, t) \cdot d\tilde{a}
\]
Equations of motion of the non-ideal fluids in Lagrangian Formalism:

\[\frac{\dot{\zeta}^\alpha}{\rho_0} = \pi^\alpha, \]

\[\dot{\pi}^\alpha = -\frac{\partial}{\partial a^i} \left(p A^{\alpha i} \left(\partial \zeta^i \right) \right) - \nabla^\alpha \phi + J \left(\partial \zeta^i \right) \nabla^\eta \sigma^\alpha \eta, \]

\[\dot{s} = \frac{J \Lambda_{\alpha \beta \gamma \delta}}{\rho_0 T} \nabla^\alpha \left(\frac{\pi^\beta}{\rho_0} \right) \nabla^\gamma \left(\frac{\pi^\delta}{\rho_0} \right) + \frac{\kappa J}{\rho_0 T} \nabla^\eta \nabla^\eta T, \]

\[\nabla^\alpha \overset{\text{def}}{=} (J^{-1})^\alpha_i \frac{\partial}{\partial a^i}, \quad \sigma_{\alpha \beta} = \Lambda_{\alpha \beta \gamma \delta} (J^{-1})^{k \gamma} \frac{\partial \pi^\delta}{\partial a^k}, \]

\[\Lambda_{\alpha \beta \gamma \delta} \overset{\text{def}}{=} \eta \left(\delta_{\delta \alpha} \delta_{\gamma \beta} + \delta_{\delta \beta} \delta_{\gamma \alpha} - \frac{2}{3} \delta_{\alpha \beta} \delta_{\gamma \delta} \right) + \zeta \delta_{\alpha \beta} \delta_{\gamma \delta} \]
PLAN OF THE TALK 2/2

- Non-ideal fluids: the metriplectic formulation;
The central result of this presentation, namely the metric bracket for non-ideal fluids in Lagrangian Formalism, is obtained out of the expression of the same quantity in Eulerian formalism:

$$(F, G) =$$

$$= \frac{1}{\lambda} \int_D d^3x \left\{ T \Lambda_{ikmn} \left[\partial^i \left(\frac{1}{\rho} \frac{\delta F}{\delta v_k} \right) - \frac{1}{\rho T} \partial^i v^k \frac{\delta F}{\delta s} \right] \left[\partial^m \left(\frac{1}{\rho} \frac{\delta G}{\delta v_n} \right) - \frac{1}{\rho T} \partial^m v^n \frac{\delta G}{\delta s} \right] + \kappa T^2 \partial^k \left(\frac{1}{\rho T} \frac{\delta F}{\delta s} \right) \partial_k \left(\frac{1}{\rho T} \frac{\delta G}{\delta s} \right) \right\}$$

($$\rho, s$$ and $$v$$ are the Eulerian variables mass density, mass-specific entropy density and bulk velocity).
This **caveat** renders it possible to write the **metric bracket in Lagrangian Formalism** as follows:

\[
(F, G) = \\
= \frac{1}{\lambda} \int_{D_0} \mathcal{J} d^3 a \left\{ T \Lambda_{\alpha \beta \gamma \delta} \left[\nabla^\alpha \left(\frac{\delta F}{\delta \pi_\beta} \right) - \frac{1}{\rho_0 T} \nabla^\alpha \left(\frac{\pi_\beta}{\rho_0} \right) \frac{\delta F}{\delta s} \right] \left[\nabla^\gamma \left(\frac{\delta G}{\delta \pi_\delta} \right) - \frac{1}{\rho_0 T} \nabla^\gamma \left(\frac{\pi_\delta}{\rho_0} \right) \frac{\delta G}{\delta s} \right] + \right. \\
\left. + \kappa T^2 \nabla^\eta \left(\frac{1}{\rho_0 T} \frac{\delta F}{\delta s} \right) \nabla^\eta \left(\frac{1}{\rho_0 T} \frac{\delta G}{\delta s} \right) \right\}
\]
Entropy generates the dissipative part of momentum and entropy-density dynamics through this metric bracket:

\[
(\hat{\pi}_t (\tilde{a}'))_{\text{diss}} = \lambda (\pi_t (\tilde{a}'), S), \quad (\dot{s} (\tilde{a}'))_{\text{diss}} = \lambda (s (\tilde{a}'), S)
\]

\[
F = H + \lambda S,
\]

\[
H = \int_{D_0} \left[\frac{\pi^2}{2 \rho_0} + \rho_0 \phi \left(\zeta \right) + \rho_0 U \left(\frac{\rho_0}{\mathcal{J}}, s \right) \right] d^3 a,
\]

\[
S [s] = \int_{D_0} \rho_0 (\tilde{a}) s (\tilde{a}, t) d^3 a,
\]

\[
\dot{\Phi} = \langle\langle \Phi, F \rangle\rangle,
\]

\[
\langle\langle A, B \rangle\rangle = \{A, B\} + (A, B)
\]

\[
\{S, H\} = 0, \quad (S, H) = 0
\]

- A suitable combination of Hamiltonian and entropy, namely the free energy \(F \), gives rise to the full dynamics of the complete system, provided the metriplectic bracket \(\langle\langle...,\rangle\rangle \) is defined.
PLAN OF THE TALK 2/2

• Non-ideal fluids: the metriplectic formulation;

• Conclusions.
• **All the gifts** of the algebrized Physics for the conservative systems.

• **Friction forces**, acting within isolated (complete) systems, are algebrized.

• **Dissipative motion** is produced by a suitable semi-definite symmetric bracket with the entropy of the µSTDOF onto which dissipation pours energy.

• The symmetric bracket plus the Poisson bracket of the conservative motion defines the metriplectic algebra $<[A,B]>$ of the observables of complete systems.

• The metriplectic formalism algebraically generates motions converging to asymptotic equilibria for dissipative isolated systems.
• Fluids in Lagrangian Formalism: the motion of the continuous system is given by the diffeomorphism mapping the initial material domain into the one at a later generic time \(t \);

• Introducing the parcel variables: \(\zeta \) and \(\pi \) describe the dynamics of the centre-of-mass of the parcel, while the relative variables are statistically described by the equilibrium thermodynamics of the parcel’s particles. Dilation factor \(J \) and entropy density;

• Ideal fluids: \(\zeta \) and \(\pi \) are involved in a symplectic dynamics, while the entropy does not change at all, being a Casimir invariant;

• Non-ideal fluids: the formerly define symplectic dynamics is enriched by a metric part, confering to \(\pi \) a dissipative dynamics, while the entropy, remaining a Casimir invariant, monotonically grows due to the metric.
Thank you very much for your kind attention...

...but it’s already time to go.

Credits: “Corto Maltese” © by Hugo Pratt, freely edited by MM