Experimental Analysis of Piezoelectric Transducers for Impedance-Based Structural Health Monitoring

Vinicius A. D. de Almeida, Fabricio G. Baptista *, Lucas C. Mendes and Danilo E. Budoya

Department of Electrical Engineering
Faculdade de Engenharia de Bauru
UNESP – Univ Estadual Paulista
Av. Eng. Luiz Edmundo Corrino Coube, 14-01, Bauru-SP, 17033-360, Brazil

*Author to whom correspondence should be addressed; E-Mail: fabriciogb@feb.unesp.br
Outline

• Structural Health Monitoring (SHM)
• Electromechanical Impedance (EMI) Method
• Piezoelectric Transducers
• Damage Detection – Damage Indices
• Experimental Setup
• Results
• Conclusions
Structural Health Monitoring (SHM)

Objective: monitoring and detection of structural damage

Application: various types of structures
Structural Health Monitoring (SHM)

Benefits

- Reduction of maintenance costs
- Improved safety
- Increased lifetime
Electromechanical Impedance (EMI) Method

Damage detection

- Acoustic Emission
- Comparative vacuum
- Eddy current
- Lamb waves
- Electromechanical impedance (EMI)

The electromechanical impedance (EMI) method stands out from the other methods by its simplicity and by using low-cost, lightweight and small piezoelectric transducers.
Electromechanical Impedance (EMI) Method

Principle

\[
Z_E(\omega) = \frac{1}{j \omega C_0} \| jZ_T \left(\frac{s_{11}}{d_{31} \ell} \right)^2 \left[\frac{1}{2} \tan \left(\frac{k \ell}{2} \right) - \frac{1}{\sin(k \ell)} + \frac{Z_s}{j2Z_T} \right]
\]

Electrical impedance Transducer
\[Z_E(\omega)\]

Mechanical impedance Structure
\[Z_s\]
Piezoelectric Transducers

PZT (lead zirconate titanate) piezoceramic
Type: 5H
Size: 15 x 15 x 0.267 mm

MFC (macro-fiber composite)
Type: M2814-P2
Size: 37 x 18 mm

Piezoelectric diaphragm – “Buzzer”
Size: 27 mm (external diameter)
Damage Detection – Damage Indices

- Comparison of two electrical impedance signatures: **healthy condition** and **damaged condition**

- We used the real part of the electrical impedance

RMSD

Root mean square deviation

\[
RMSD = \sqrt{\frac{1}{\omega_f - \omega_i} \sum_{k=\omega_i}^{\omega_f} \left[Z_{E,D}(k) - Z_{E,H}(k) \right]^2}
\]

CCDM

Correlation coefficient deviation metric

\[
CCDM = 1 - \frac{\sum_{k=\omega_i}^{\omega_f} \left[Z_{E,H}(k) - \bar{Z}_{E,H} \right] \left[Z_{E,D}(k) - \bar{Z}_{E,D} \right]}{\sqrt{\sum_{k=\omega_i}^{\omega_f} \left[Z_{E,H}(k) - \bar{Z}_{E,H} \right]^2} \sqrt{\sum_{k=\omega_i}^{\omega_f} \left[Z_{E,D}(k) - \bar{Z}_{E,D} \right]^2}}
\]
Experimental Setup

Structures

Aluminum beams
500 x 38 x 3 mm

The transducers were placed on the beams using cyanoacrylate glue

Damage was simulated by placing a small steel nut
11 x 0.5 mm, 1 g
Experimental Setup

Measurement System

Configuration

- Sampling rate: 2 MS/s
- Excitation voltage: 1 V
- Frequency range: 0 – 500 kHz
- Frequency step: 2 Hz

Measurement System

Auxiliary Circuit

- PZT
- Rs

DAQ Device

- DAC
- ADC
- USB

Calibrated Signal Pattern

- Excitation
- Windowing
- DFT

- FRF
- Averaging
- Calculation of Z

NI USB-6361

ni.com
Experimental Setup
Results – Impedance Signatures – 5H PZT patch
Results – Impedance Signatures – MFC transducer
Results – Impedance Signatures – **Buzzer**

Piezoelectric diaphragm, “buzzer”

- **Damaged**
- **Healthy**

![Graph](image-url)
Results – Impedance Signatures

According to the electrical impedance signatures:

• There are resonance peaks in the signatures related to the natural frequencies of the structures;

• Structural damage (nut) causes variations in frequency and amplitude in these peaks, which can be quantified by indices of damage;

• The peaks are more significant at low frequencies and tend to decrease as the frequency increases;

• The PZT patch has provided impedance signatures with higher amplitude;

• Impedance signatures with lower amplitude were obtained using the MFC transducer;

• The piezoelectric diaphragm provided impedance signatures with intermediate amplitude between the other two transducers.
Results – Damage Indices – **5H PZT Patch**

- RMSD

- CCDM

5H PZT patch
Results – Damage Indices – MFC transducer

RMSD

MFC transducer

0 10000 5000 0

Frequency (kHz)

CCDM

MFC transducer

0 1 0.5 0

Frequency (kHz)
Results – Damage Indices – **Buzzer**

Piezoelectric diaphragm, “buzzer”

RMSD

CCDM

Frequency (kHz)
Results – Damage Indices

According to the damage indices:

• The PZT patch and the diaphragm provided the highest indices for low frequencies around approximately 10-70 kHz;

• The MFC transducer provided higher indices at high frequencies;

• The piezoelectric diaphragm showed a reasonable sensitivity to detect damage, although the indices were lower compared to other transducers. However, this device has the advantage of having a very low cost.
Conclusions

- The experimental results indicate that the transducers have different sensitivities to detect damage;

- The sensitivity varies significantly with the frequency range;

- It is important to note that this study does not consider an important feature of the transducers for the EMI method, which is to provide repeatable and consistent impedance signatures.
Acknowledgments

The authors would like to thank FAPESP–Sao Paulo Research Foundation (grants 2013/16434-0, 2012/10825-4 and 2013/02600-5), CNPq, and PROPe-UNESP for the financial support.

Questions?

Fabricio Guimarães Baptista
fabriciogb@feb.unesp.br

Department of Electrical Engineering
Faculdade de Engenharia de Bauru
UNESP – Univ Estadual Paulista
Av. Eng. Luiz Edmundo Corrijo Coube, 14-01, Bauru-SP, 17033-360, Brazil