Please login first

List of accepted submissions

 
 
Show results per page
Find papers
 
  • Sciforum conference paper
  • 0 Reads
  • 0 Citations
In Proceedings of the 1st Int. Electron. Conf. Hydrol. Cycle 12-16 November 2017; MDPI AG , 2017,
doi: 10.3390/CHyCle-2017-04829

The Arctic system is one of the most vulnerable region under climate change conditions and it has suffered important changes on last decades. Several recent studies have suggested the influence of moisture transport in the observed sea ice loss on this region. Changes in moisture transport could affect the arctic region by changing the cloud cover, by affecting river discharge or by direct effect of precipitation over the sea ice, for example. Atmospheric rives (ARs) represent one of the main mechanism of global moisture transport, being especially relevant on the connection between lower and higher latitudes. Despite this importance, the influence of ARs over the Arctic system has not been widely study.

The objective of this is work is to establish a first step on the study of the influence of the occurrence of ARs over the polar region. For this purpose, the lagrangian model FLEXPART was used to analyze moisture sources for those regions of maximum occurrence of ARs for the period 1994-2014 in order to analyze the origin of moisture transported by these meteorological structures. The location of ARs affecting the Arctic was realized using an automated algorithm and the region of maximum occurrence was defined taking into account the number of ARs detected for August and September (when sea ice is minimum over the Arctic ocean) over a band of 10° of latitude centered on 60°N. For these regions and considering those days of ARs occurrence, the anomalous moisture sources was defined in relation with mean situation for the complete period.

From the results, main moisture sources for ARs events extends over the North Atlantic and North Pacific oceans, moreover local input of moisture over the region of maximum ARs occurrence seems to be especially relevant. It is interesting to highlight the moisture uptake from Eastern Asia for the month of August. In general it could be conclude that, for ARs events the moisture uptake around and over the maximum occurrence area highly increase becoming relevant sources of moisture feeding up the event.

The location of the origin of the moisture that feed up Arctic ARs is an important step forward on the study of the influence of these structures over the region. Further analysis regarding the contribution of moisture from ARs over the region should be realized in order to complete the relation ARs-sea ice; being this study suitable for a future work.

  • Sciforum conference paper
  • 0 Reads
  • 0 Citations
In Proceedings of the 1st Int. Electron. Conf. Hydrol. Cycle 12-16 November 2017; MDPI AG , 2017,
doi: 10.3390/CHyCle-2017-04830

The optimal exploitation of water from a dam reservoir requires a comprehensive knowledge of future availability of water resources. In this case the amount of water that will be available in the future is important. Also, we need to examine the flows at the dam from a short-term perspective. This is necessary to avoid overflowing and to minimize damage. In order to facilitate forecasting of the water resources, many different techniques have been developed through the years. In this paper, using annual mean flow data (since 1958-2005) obtained from jelogir majin Hydrometric station at Karkheh River (upstream of Karkheh Dam), the Auto Regressive Integrated Moving average (ARIMA) model, for prediction of annual mean inflow to Karkheh Dam reservoir was accomplished. On the basic of comparison the results of the model with measured data, the performance of ARIMA (4, 1, 1) model by conditional least square (CLS) estimation parameter method is acceptable.The SAS and SPSS softwares were used to implement of the models.

  • Sciforum conference paper
  • 0 Reads
  • 0 Citations
In Proceedings of the 1st Int. Electron. Conf. Hydrol. Cycle 12-16 November 2017; MDPI AG , 2017,
doi: 10.3390/CHyCle-2017-04831

In the last decades many studies have pointed out an increasing number of natural hazards associated with extremes in precipitation and drought conditions. Generally, dry and hot conditions across the Europe impact on the Mediterranean region. The Mediterranean is located at the border between the tropical climate zone and the mid latitude climate belt. Due to its large extension and diverse topography, it shows large climatic differences that make its climate scientifically interesting.  

The aim of this study is to analyze the moisture transport during the 2003 drought episode observed over the surroundings of the Mediterranean. The region was defined according to the 5th Intergovernmental Panel on Climate Change (IPCC) Assessment Report. The episode was identified using Standardized Precipitation Evapotranspiration Index (SPEI), calculated using monthly CRU (TS3.24.01) precipitation and potential evapotranspiration (PET). One of the crucial advantages of the SPEI over the other widely used drought indexes is its multi-scalar characteristics, which enable identification of different drought types. Therefore, the monthly SPEI-1, SPEI-3, SPEI-6, SPEI-12 and SPEI-24 indexes were used to identify the episodes on different time scales. This episode was the most severe during the period 1980-2015 according to the SPEI-1 analysis. Analyses of precipitation, potential evapotranspiration, omega at 500hPa, and vertically integrated moisture flux have been conducted to characterize the anomalous patterns over the region during the event. A Lagrangian approach was then applied in order to investigate possible changes in the moisture transport from and toward the Mediterranean region during the episode. This approach is based on the FLEXPART model integrated with the ERA-Interim data set.

1 2 3 4
Top